• Title/Summary/Keyword: Edge-Based Method

Search Result 1,572, Processing Time 0.025 seconds

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

A Method for Quantitative Performance Evaluation of Edge Detection Algorithms Depending on Chosen Parameters that Influence the Performance of Edge Detection (경계선 검출 성능에 영향을 주는 변수 변화에 따른 경계선 검출 알고리듬 성능의 정량적인 평가 방법)

  • 양희성;김유호;한정현;이은석;이준호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.993-1001
    • /
    • 2000
  • This research features a method that quantitatively evaluates the performance of edge detection algorithms. Contrary to conventional methods that evaluate the performance of edge detection as a function of the amount of noise added to he input image, the proposed method is capable of assessing the performance of edge detection algorithms based on chosen parameters that influence the performance of edge detection. We have proposed a quantitative measure, called average performance index, that compares the average performance of different edge detection algorithms. We have applied the method to the commonly used edge detectors, Sobel, LOG(Laplacian of Gaussian), and Canny edge detectors for noisy images that contain straight line edges and curved line edges. Two kinds of noises i.e, Gaussian and impulse noises, are used. Experimental results show that our method of quantitatively evaluating the performance of edge detection algorithms can facilitate the selection of the optimal dge detection algorithm for a given task.

  • PDF

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

Image Enhancement Method using Canny Algorithm based on Curvelet Transform

  • Mun, Byeong-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.51-56
    • /
    • 2018
  • This paper proposes the efficient preprocessing method based on curvelet transform for edge enhancement in image. The propose method is generated the edge map by using the Canny algorithm to wavelet transform, which is the sub-step of the curvelet transform. In order to improve the part of edge feature, the selective sharpening according to the generate edge map is applied. In experimental result, the propose method achieves that the enhancement of edge feature is better than conventional methods. This leads that peak to signal noise ratio, edge intensity are improvement on average about 1.92, 1.12dB respectively.

Fast Edge Map Method And Edge Map Compression Using Edge Features (고속 Edge Map 생성 방법과 Edge 특성을 이용한 Edge Map 압축)

  • Kim, Do-Hyun;Kim, Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.45-48
    • /
    • 2015
  • 오늘날 하드웨어의 발전으로 인해 영상 해상도는 FHD를 넘어 4K UHD 이상의 영상 해상도가 사용화되고 있다. 하지만 Edge Map을 만들기 위해 일반적으로 사용하는 함수들은 Convolution 함수 일종으로서 영상의 해상도가 높을수록 더 많은 Complexity를 요구한다. 또한 현재 주요 영상 압축 기술인 JPEG, H.264/AVC High efficiency video coding(HEVC)같은 기법들은 자연 영상을 중점으로 개발되어 있어 Edge map 압축에 있어 자연 영상만큼의 효율을 보여주지 못하고 있다. 본 논문은 원 영상을 Down Scaling한 뒤 이미지를 다시 원래 사이즈로 Up Scaling하여 두 영상의 차를 이용한 Edge Map을 생성하는 새로운 방법을 소개한다. 생성된 Edge Map의 특성인 Histogram 값의 분포가 0을 중심으로 Gaussian 분포를 가지는 것을 이용한 Zero Based 코덱을 제안한다. 제안된 알고리즘을 이용하여 고 해상도 영상에서도 빠르게 Edge Map을 생성하고 제안한 코덱을 통해 해당 Edge map을 압축한 결과 다른 압축 기술보다 더 뛰어난 성능을 보여주었다.

  • PDF

Content Based Image Retrieval Based on A Novel Image Block Technique Combining Color and Edge Features

  • Kwon, Goo-Rak;Haoming, Zou;Park, Sei-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • In this paper we propose the CBIR algorithm which is based on a novel image block method that combined both color and edge feature. The main drawback of global histogram representation is dependent of the color without spatial or shape information, a new image block method that divided the image to 8 related blocks which contained more information of the image is utilized to extract image feature. Based on these 8 blocks, histogram equalization and edge detection techniques are also used for image retrieval. The experimental results show that the proposed image block method has better ability of characterizing the image contents than traditional block method and can perform the retrieval system efficiently.

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

Flow Prediction-Based Dynamic Clustering Method for Traffic Distribution in Edge Computing (엣지 컴퓨팅에서 트래픽 분산을 위한 흐름 예측 기반 동적 클러스터링 기법)

  • Lee, Chang Woo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1136-1140
    • /
    • 2022
  • This paper is a method for efficient traffic prediction in mobile edge computing, where many studies have recently been conducted. For distributed processing in mobile edge computing, tasks offloading from each mobile edge must be processed within the limited computing power of the edge. As a result, in the mobile nodes, it is necessary to efficiently select the surrounding edge server in consideration of performance dynamically. This paper aims to suggest the efficient clustering method by selecting edges in a cloud environment and predicting mobile traffic. Then, our dynamic clustering method is to reduce offloading overload to the edge server when offloading required by mobile terminals affects the performance of the edge server compared with the existing offloading schemes.

Development of Edge Cloud Platform for IoT based Smart Factory Implementation

  • Kim, Hyung-Sun;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.49-58
    • /
    • 2019
  • In this paper, we propose an edge cloud platform architecture for implementing smart factory. The edge cloud platform is one of edge computing architecture which is mainly focusing on the efficient computing between IoT devices and central cloud. So far, edge computing has put emphasis on reducing latency, bandwidth and computing cost in areas like smart homes and self-driving cars. On the other hand, in this paper, we suggest not only common functional architecture of edge system but also light weight cloud based architecture to apply to the specialized requirements of smart factory. Cloud based edge architecture has many advantages in terms of scalability and reliability of resources and operation of various independent edge functions compare to typical edge system architecture. To make sure the availability of edge cloud platform in smart factory, we also analyze requirements of smart factory edge. We redefine requirements from a 4M1E(man, machine, material, method, element) perspective which are essentially needed to be digitalized and intelligent for physical operation of smart factory. Based on these requirements, we suggest layered(IoT Gateway, Edge Cloud, Central Cloud) application and data architecture. we also propose edge cloud platform architecture using lightweight container virtualization technology. Finally, we validate its implementation effects with case study. we apply proposed edge cloud architecture to the real manufacturing process and compare to existing equipment engineering system. As a result, we prove that the response performance of the proposed approach was improved by 84 to 92% better than existing method.

Switching Function using Edge-Valued Decision Diagram

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.276-281
    • /
    • 2011
  • This paper presents a method of constructing the switching function using edge-valued decision diagrams. The proposed method is as following. The edge-valued decision diagram is a new data structure type of decision diagram which is recently used in constructing the digital logic systems based on the graph theory. Next, we apply edge-valued decision diagram to function minimization of digital logic systems. The proposed method has the visible, schematic and regular properties.