• Title/Summary/Keyword: Edge improvement

Search Result 475, Processing Time 0.029 seconds

Analysis of Reduction of NPS Pollution loads using the small sediment trap at field (소규모 침사구를 이용한 밭의 비점오염원 저감 효과 분석)

  • Shin, Min-Hwan;Lim, Kyoung-Jae;Jang, Jeong-Ryeol;Choi, Yong-Hun;Park, Woon-Ji;Won, Chul-Hee;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Various Best Management Practices (BMPs) have been suggested to reduce Nonpoint source pollutant loads from agricultural fields. However, very little research regarding water quality improvement with sediment trap has been performed in Korea. Thus, effects of sediment trap were investigated in this study. Three sediment traps were installed at the edge of six plots and flow and water quality of inflow and outflow were monitored and analyzed. It was found that approximately 64.1 % of flow reduction was observed. In addition, pollutant concentration of outflow was reduced by 39.0 % for $BOD_5$. For SS, $COD_{Mn}$, DOC, T-N, T-P, approximately 62.1 %, 43.4 %, 43.5 %, 40.0 %, and 41.2 % reduction were observed, respectively. Over 80 % and 90 % of pollutant loads were reduced from sediment trap #2 and #3 because of less outflow from plots covered with rice straw/straw mat. In case of intensive rainfall events occurred from July 26~29, 2011, over 60 % of pollutant and 88.9 % of sediment reduction were observed from sediment trap #3. As shown in this study, small sediment traps could play important roles in reducing pollutant loads from agricultural fields. If proper management practices, such as rice straw/straw mat, are used to protect surface from rainfall impacts and rill formation, much pollutant reduction could be expected.

Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Islands, Dokdo and Their Application on Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1269-1278
    • /
    • 2013
  • Crack remediation on the surface of cement mortar using microbiological calcium carbonate ($CaCO_3$) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-$CaCl_2$ media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed $CaCO_3$ precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

A Study on the Development of Creativity in Elementary School Through Micro-Robot Education (마이크로 로봇 교육을 통한 초등학교 창의성 계발에 대한 연구)

  • Kim Jong-Hoon;Kim Jong-Jin;Lee Tae-Oak
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.8
    • /
    • pp.124-132
    • /
    • 2006
  • The present cutting-edge industry demands talents with engineering mind that enables them to think and operate in creative manners by themselves while escaping from simple maneuvering activities. Pursuant to the demand of the times, micro-robot manufacturing education at an elementary school level will be an appropriate alternative for developing creativity of children. According to such a need, I designed an effective micro-robot education program for creativity development, and researched it by applying it to the field of education. As a result, in the first place, I could propose teaching-learning material for elementary school for micro-robot manufacturing, Second, I designed a learning program suited to elementary students by dividing it into seven steps. Lastly, there was an improvement in creativity of learners who used the designed teaming program as a result of applying and analyzing the Program.

  • PDF

Image Segmentation Using Anisotropic Diffusion Based on Diagonal Pixels (대각선 방향 픽셀에 기반한 이방성 확산을 이용한 영상 분할)

  • Kim Hye-Suk;Yoon Hyo-Sun;Toan Nguyen Dinh;Yoo Jae-Myung;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.21-29
    • /
    • 2007
  • Anisotropic diffusion is one of the widely used techniques in the field of image segmentation. In the conventional anisotropic diffusion [1]-[6], usually 4-neighborhood directions are used: north, south, west and east, except the image diagonal directions, which results in the loss of image details and causes false contours. Existing methods for image segmentation using conventional anisotroplc diffusion can't preserve contour information, or noises with high gradients become more salient as the umber of times of the diffusion increases, resulting in over-segmentation when applied to watershed. In this paper, to overcome the shortcoming of the conventional anisotropic diffusion method, a new arusotropic diffusion method based on diagonal edges is proposed. And a method of watershed segmentation is applied to the proposed method. Experimental results show that the process time of the proposed method including diagonal edges over conventional methods can be up to 2 times faster and the Circle image quality improvement can be better up to $0.45{\sim}2.33(dB)$. Experiments also show that images are segmented very effectively without over segmentation.

A Study on the Efficient Improvement of the Animatics for Animation Production in Education (애니메이션 교육을 위한 애니메틱스 제작의 효율적 방안 연구)

  • Hong, Il-Yang
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1391-1398
    • /
    • 2010
  • Animation is breathing life into drawings through motion. Animation is formed by the afterimage phenomenon, that is, deviation of sequential pictures in every frame makes a person possibly perceive it as a live video. Consequently, animation is mostly produced using traditional frame-by-frame methods. The study of relations on timing has been a major concern of animation theory. Nevertheless, issues of timing on production outcomes and effectiveness are mostly ignored. Special focus, analysis and leadership studies on timing are addressed on animatics. Creating better timing through animatics, that is writing movies, directing, scheduling and amending storyboard in pre-production stage, eventually shorten time to animation production. This research is centered on animatics as a cutting edge educational courses. This course will introduce students to the animation production skill and instructors to in-depth teaching points. One of the concepts that we want to go for is keeping animatics apart from mere storyboard. In conjunction with the animation theory, this research conducted under the focus of production of animatics will lead to more efficient way of education on animatics.

Automotive Engine Performance Analysis of antifreeze content and water type (부동액 함유량과 냉각수 종류에 따른 자동차 엔진 성능분석)

  • Hong, Sung-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1594-1599
    • /
    • 2015
  • The world car industry is in an era of internal combustion engines in the past 100 years of environmental, energy and IT is eco-friendly, high-tech cars technologies are bringing an era of change. Until now, the study of new technologies in automobile research and development has been focused on. The car's new technology development is also important, but it's cutting-edge technology is used in the car before the car's performance, and became an important point in the customer experience improvement problems. New technology development, as well as effective for existing technology applied is also important. This study was to determine the effects of temperature and the performance of automobile engine and determine the cause of the content in accordance with the type(tap water, distilled water, underground water) of anti-freeze and water that is contained in the automotive engine cooling water for the effective application of the anti-freeze. In the freezing point of the coolant -10, -20, -30, -40, $-50^{\circ}C$ dynamo performance test was conducted with the numerical analysis. Water (distilled water) were measured at the reference point peak performance 71.112, 99.622hp freezing $-10^{\circ}C$.

Ultra-mode Decision Algorithm for Fast Encoding of H.264/AVC Video (H.264/AVC비디오의 고속 부호화를 위한 인트라모드 선택 알고리듬)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6C
    • /
    • pp.585-593
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264 standard uses new coding tools such as VBS, 1/4-pel accurate ME, multiple references, intra prediction, loop filter, etc. Using these coding tools, H.264 has achieved significant improvements from rate-distortion point of view compared to existing standards. However, the encoder complexity is greatly increased due to these coding tools. We focus on the complexity reduction method of intra-mode decision. Our algorithm first restricts selective prediction modes of Intra4x4 using a simple preprocessing. The prediction modes of Intra4x4 are used for restricting those of the other inter-modes. Simulation results show that the proposed method outperforms other conventional methods and save about 82% of total encoding time.

Real-Time GPU Technique for Extracting Mesh Isosurfaces from BCC Volume Datasets (BCC 볼륨 데이터로부터 실시간으로 메시 형태의 등가면을 추출하는 GPU 기법)

  • Kim, Hyunjun;Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.4
    • /
    • pp.17-26
    • /
    • 2020
  • We present a real-time GPU(Graphic Processing Unit) marching tetrahedra technique that extracts isosurfaces in the indexed mesh format from BCC(Body Centered Cubic) volume datasets. Compared to classical marching tetrahedra, our method shows better performance with little memory overhead. Our technique is composed of five stages. In the first stage, which needs to be done only once, we build min/max blocks that is to be used for empty space skipping to boost the performance. Next, we extract active blocks that contain the current isovalue. In the next two stages, we extract the edges and cells that contain the isosurface and then the final triangular mesh is generated in the last stage. When applied 5123 or higher resolution volume dataset, our technique shows up to 5 times speed improvement compared to the classical marching tetrahedra algorithm.

Iterative Reduction of Blocking Artifact in Block Transform-Coded Images Using Wavelet Transform (웨이브렛 변환을 이용한 블록기반 변환 부호화 영상에서의 반복적 블록화 현상 제거)

  • 장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2369-2381
    • /
    • 1999
  • In this paper, we propose an iterative algorithm for reducing the blocking artifact in block transform-coded images by using a wavelet transform. In the proposed method, an image is considered as a set of one-dimensional horizontal and vertical signals and one-dimensional wavelet transform is utilized in which the mother wavelet is the first order derivative of a Gaussian like function. The blocking artifact is reduced by removing the blocking component, that causes the variance at the block boundary position in the first scale wavelet domain to be abnormally higher than those at the other positions, using a minimum mean square error (MMSE) filter in the wavelet domain. This filter minimizes the MSE between the ideal blocking component-free signal and the restored signal in the neighborhood of block boundaries in the wavelet domain. It also uses local variance in the wavelet domain for pixel adaptive processing. The filtering and the projection onto a convex set of quantization constraint are iteratively performed in alternating fashion. Experimental results show that the proposed method yields not only a PSNR improvement of about 0.56-1.07 dB, but also subjective quality nearly free of the blocking artifact and edge blur.

  • PDF

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF