Proceedings of the Korean Society of Propulsion Engineers Conference
/
2008.03a
/
pp.871-876
/
2008
The blade vibration problem of bladed disk is the most critical subject to consider since it directly affects the stable performance of the engine as well as life of the engine. Especially, due to complicated vibration pattern of the bladed disk, more effort was required for vibration analysis and test. The research of measuring the vibration of the bladed disk, using NSMS(Non-intrusive stress measurement) instead of Aeromechanics testing method requiring slip ring or telemetry system with strain gauge, was successful. These testing can report the actual stresses seen on the blades; detect synchronous resonances that are the source of high cycle fatigue(HCF) in blades; measure individual blade mis-tuning and coupled resonances in bladed disks. In order to minimize the error being created due to heat expansion, the tip timing sensor is installed parallel to the blade trailing edge, yielding optimal result. Also, when working on finite element analysis, the whole bladed disk has gone through three-dimensional analysis, evaluating the family mode. The result of the analysis matched well with the test result.
Journal of the Korea Society of Computer and Information
/
v.24
no.6
/
pp.57-65
/
2019
In this paper, we study on finding the rail space in elevators by analyzing each image captured with CCD camera. We propose a method that applies one-dimensional matched filter to the pixels of a selected search space in the vertical line at a horizontal position and decides the position with the thickness of the space being represented by a black thick line in captured images. The pattern similarity representing how strongly the associated image pixels resemble with the thick line is defined and calculated with respect to each position along the vertical line of pixels. The position and thickness of the line are decided from the point having the maximum in pattern similarity graph. In the experiments of the proposed method under different illuminational conditions, it is observed that all the pattern similarity graphs show similar shape around door area independent of the conditions and the method can effectively detect the rail space if the rails are illuminated with even weak light. The method can be used for real-time embedded systems because of its simple algorithm, in which it is implemented in simple structure of program with small amount of operations in comparison with the conventional approaches using Canny edge detection and Hough transform.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.11
/
pp.4395-4412
/
2020
The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.
Kim, Da-Seul;Son, Hyeon-Cheol;Si, Jong-Wook;Kim, Sung-Young
Journal of Advanced Information Technology and Convergence
/
v.10
no.1
/
pp.15-23
/
2020
In this paper, we propose a new method to detect traffic accidents in video from vehicle-mounted cameras (vehicle black box). We use the distance between vehicles to determine whether an accident has occurred. To calculate the position of each vehicle, we use object detection and tracking method. By the way, in a crowded road environment, it is so difficult to decide an accident has occurred because of parked vehicles at the edge of the road. It is not easy to discriminate against accidents from non-accidents because a moving vehicle and a stopped vehicle are mixed on a regular downtown road. In this paper, we try to increase the accuracy of the vehicle accident detection by using not only the motion of the surrounding vehicle but also ego-motion as the input of the Recurrent Neural Network (RNN). We improved the accuracy of accident detection compared to the previous method.
Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
International Journal of Computer Science & Network Security
/
v.22
no.11
/
pp.121-126
/
2022
The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.
Sadriddinov Ilkhomjon;Yixuan Yang;Sony Peng;Sophort Siet;Dae-Young Kim;Doo-Soon Park
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.389-391
/
2023
In the era of Big Data, humanity is facing a huge overflow of information. To overcome such an obstacle, many new cutting-edge technologies are being introduced. The movie recommendation system is also one such technology. To date, many theoretical and practical kinds of research have been conducted. Our research also focuses on the movie recommendation system by implementing methods from Social Network Analysis(SNA) and Parallel Programming. We applied the Girvan-Newman algorithm to detect communities of users, and a future package to perform the parallelization. This approach not only tries to improve the accuracy of the system but also accelerates the execution time. To do our experiment, we used the MovieLense Dataset.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.2
/
pp.29-34
/
2024
Since the outbreak of COVID-19, there has been a surge in sports conducted through online platforms due to the increase in remote and non-contact activities. Billiards, being suitable for online platforms, has received much attention, leading to research on detecting the position and trajectory of balls. In this paper, we propose a new method utilizing machine vision to detect the position of the balls accurately. The proposed method detects the outline of the ball using the Canny edge detection and then employs simple correlation to determine its position. This correlation-based approach offers satisfactory system performance and is easily applicable in practical systems due to its low implementation complexity and robustness to noise.
Qingyun Gao;Yun Wang;Zhimin Zhou;Khalid A. Alnowibet
Smart Structures and Systems
/
v.33
no.5
/
pp.333-347
/
2024
There has been an increasing interest in the construction of smart buildings that can actively monitor and react to their surroundings. The capacity of these intelligent structures to precisely predict and respond to deflection is a crucial feature that guarantees both their structural soundness and efficiency. Conventional techniques for determining deflection often depend on intricate mathematical models and computational simulations, which may be time- and resource-consuming. Artificial intelligence (AI) algorithms have become a potent tool for anticipating and controlling deflection in intelligent structures in response to these difficulties. The term "deflection-aware smart structures" in this sense refers to constructions that have AI algorithms installed that continually monitor and analyses deflection data in order to proactively detect any problems and take appropriate action. These structures anticipate deflection across a range of operating circumstances and environmental factors by using cutting-edge AI approaches including deep learning, reinforcement learning, and neural networks. AI systems are able to predict real-time deflection with high accuracy by using data from embedded sensors and actuators. This capability enables the systems to identify intricate patterns and linkages. Intelligent buildings have the potential to self-correct in order to reduce deflection and maximize performance. In conclusion, the development of deflection-aware smart structures is a major stride forward for structural engineering and has enormous potential to enhance the performance, safety, and dependability of designed systems in a variety of industries.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.6
s.312
/
pp.26-33
/
2006
Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.
Journal of the Korean association of regional geographers
/
v.2
no.2
/
pp.183-196
/
1996
The purpose of this paper is to explore the possibility of automatic extraction of line feature from Satellite image. The first part reviews the relationship between spatial filtering and cartographic interpretation. The second part describes the principal operations of high frequency filters and their properties, the third part presents the result of filtering application to the SPOT Panchromatic image of the Chinju city. Some experimental results are given here indicating the high feasibility of the filtering technique. The results of the paper is summarized as follows: Firstly the good all-purposes filter dose not exist. Certain laplacian filter and Frei-chen filter were very sensitive to the noise and could not detect line features in our case. Secondly, summary filters and some other filters do an excellent job of identifying edges around urban objects. With the filtered image added to the original image, the interpretation is more easy. Thirdly, Compass gradient masks may be used to perform two-dimensional, discrete differentiation directional edge enhancement, however, in our case, the line featuring was not satisfactory. In general, the wide masks detect the broad edges and narrow masks are used to detect the sharper discontinuities. But, in our case, the difference between the $3{\times}3$ and $7{\times}7$ kernel filters are not remarkable. It may be due to the good spatial resolution of Spot scene. The filtering effect depends on local circumstance. Band or kernel size selection must be also considered. For the skillful geographical interpretation, we need to take account the more subtle qualitative information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.