• Title/Summary/Keyword: Edge computing.

Search Result 510, Processing Time 0.029 seconds

A Novel Smart Contract based Optimized Cloud Selection Framework for Efficient Multi-Party Computation

  • Haotian Chen;Abir EL Azzaoui;Sekione Reward Jeremiah;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.240-257
    • /
    • 2023
  • The industrial Internet of Things (IIoT) is characterized by intelligent connection, real-time data processing, collaborative monitoring, and automatic information processing. The heterogeneous IIoT devices require a high data rate, high reliability, high coverage, and low delay, thus posing a significant challenge to information security. High-performance edge and cloud servers are a good backup solution for IIoT devices with limited capabilities. However, privacy leakage and network attack cases may occur in heterogeneous IIoT environments. Cloud-based multi-party computing is a reliable privacy-protecting technology that encourages multiparty participation in joint computing without privacy disclosure. However, the default cloud selection method does not meet the heterogeneous IIoT requirements. The server can be dishonest, significantly increasing the probability of multi-party computation failure or inefficiency. This paper proposes a blockchain and smart contract-based optimized cloud node selection framework. Different participants choose the best server that meets their performance demands, considering the communication delay. Smart contracts provide a progressive request mechanism to increase participation. The simulation results show that our framework improves overall multi-party computing efficiency by up to 44.73%.

IoT Roaming Service for Seamless IoT Service (무중단 IoT 서비스 제공을 위한 IoT 로밍서비스)

  • Ahn, Junguk;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1258-1269
    • /
    • 2020
  • The IoT(Internet of Things) service provides users with valuable services by collecting and analyzing data using Internet-connected IoT devices. Currently, IoT service platforms are accomplished by using edge computing to reduce the delay time required to collect data from IoT devices. However, if a user moves to another network with IoT device, the connection will be lost and IoT service will be suspended. To solve this problem, we proposes a service that automatically roaming IoT service when IoT device makes move. IoT roaming service provides a device automatic tracking management technique designed to continue receiving IoT services even if users move to other networks. To check if the proposed roaming service was effective, we implemented IoT roaming service and measured the data transfer time while move between networks along with devices while using IoT service. As a result, the average data transfer time was 124.62ms, and the average service interrupt time was 812.12ms. with this result, we can assume that the user could feel service interruption time very shortly and it will not affect the service experience. with IoT roaming service, we expect that it will present a method that stably providing IoT services even if user moves networks.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Emerging Technologies for Sustainable Smart City Network Security: Issues, Challenges, and Countermeasures

  • Jo, Jeong Hoon;Sharma, Pradip Kumar;Sicato, Jose Costa Sapalo;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.765-784
    • /
    • 2019
  • The smart city is one of the most promising, prominent, and challenging applications of the Internet of Things (IoT). Smart cities rely on everything connected to each other. This in turn depends heavily on technology. Technology literacy is essential to transform a city into a smart, connected, sustainable, and resilient city where information is not only available but can also be found. The smart city vision combines emerging technologies such as edge computing, blockchain, artificial intelligence, etc. to create a sustainable ecosystem by dramatically reducing latency, bandwidth usage, and power consumption of smart devices running various applications. In this research, we present a comprehensive survey of emerging technologies for a sustainable smart city network. We discuss the requirements and challenges for a sustainable network and the role of heterogeneous integrated technologies in providing smart city solutions. We also discuss different network architectures from a security perspective to create an ecosystem. Finally, we discuss the open issues and challenges of the smart city network and provide suitable recommendations to resolve them.

A Video Cache Replacement Scheme based on Local Video Popularity and Video Size for MEC Servers

  • Liu, Pingshan;Liu, Shaoxing;Cai, Zhangjing;Lu, Dianjie;Huang, Guimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3043-3067
    • /
    • 2022
  • With the mobile traffic in the network increases exponentially, multi-access edge computing (MEC) develops rapidly. MEC servers are deployed geo-distribution, which serve many mobile terminals locally to improve users' QoE (Quality of Experience). When the cache space of a MEC server is full, how to replace the cached videos is an important problem. The problem is also called the cache replacement problem, which becomes more complex due to the dynamic video popularity and the varied video sizes. Therefore, we proposed a new cache replacement scheme based on local video popularity and video size to solve the cache replacement problem of MEC servers. First, we built a local video popularity model, which is composed of a popularity rise model and a popularity attenuation model. Furthermore, the popularity attenuation model incorporates a frequency-dependent attenuation model and a frequency-independent attenuation model. Second, we formulated a utility based on local video popularity and video size. Moreover, the weights of local video popularity and video size were quantitatively analyzed by using the information entropy. Finally, we conducted extensive simulation experiments based on the proposed scheme and some compared schemes. The simulation results showed that our proposed scheme performs better than the compared schemes in terms of hit rate, average delay, and server load under different network configurations.

Online Monitoring of Ship Block Construction Equipment Based on the Internet of Things and Public Cloud: Take the Intelligent Tire Frame as an Example

  • Cai, Qiuyan;Jing, Xuwen;Chen, Yu;Liu, Jinfeng;Kang, Chao;Li, Bingqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3970-3990
    • /
    • 2021
  • In view of the problems of insufficient data collection and processing capability of multi-source heterogeneous equipment, and low visibility of equipment status at the ship block construction site. A data collection method for ship block construction equipment based on wireless sensor network (WSN) technology and a data processing method based on edge computing were proposed. Based on the Browser/Server (B/S) architecture and the OneNET platform, an online monitoring system for ship block construction equipment was designed and developed, which realized the visual online monitoring and management of the ship block construction equipment status. Not only that, the feasibility and reliability of the monitoring system were verified by using the intelligent tire frame system as the application object. The research of this project can lay the foundation for the ship block construction equipment management and the ship block intelligent construction, and ultimately improve the quality and efficiency of ship block construction.

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Research Trend on Internet of Things and Smart City Using Keyword Fequency and Centrality Analysis : Focusing on United States, Japan, South Korea (키워드 빈도와 중심성 분석을 이용한 사물인터넷 및 스마트 시티 연구 동향: 미국·일본·한국을 중심으로)

  • Lee, Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.3
    • /
    • pp.9-23
    • /
    • 2022
  • This study aims to examine research trends on the Internet of Things and smart city based on papers from the United States, Japan, and Korea. We collected 7113 papers related to the Internet of Things and smart city published from 2016 to 2021 in Elsevier's Scopus. Keyword frequency and centrality analysis were performed based on the abstracts of the collected papers. We found keywords with high frequency of appearance by calculating keyword frequency and identified central research keywords through the centrality analysis by country. As a result of the analysis, research on security, machine learning, and edge computing related to the Internet of Things and smart city were the most central and highly mediating research conducted in each country. As an implication, studies related to deep learning, cybersecurity, and edge computing in Korea have lower degree centrality and betweenness centrality compared to the United States and Japan. To solve the problem it is necessary to combine these studies with various fields. The future research direction is to analyze research trends on the Internet of Things and smart city in various regions such as Europe and China.

A Study on Mobile CCTV for Geofence Monitoring for Construction Safety (건설 안전용 지오펜스 감시를 위한 이동형 CCTV 연구)

  • Kang, Aetti;Kim, Sangwoo;Baek, Eunjin;Lee, Jisoo;Eom, Semin;Ham, Sungil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.381-382
    • /
    • 2023
  • Frequent accidents occur when workers at construction sites leave the safety zone, and particularly in the past 5 years, 9 fatal accidents occurred at the Korea Railroad Corporation due to train accidents on other tracks during track work. With the Severe Accident Punishment Act taking effect in January 2022, it is a priority to secure a safe work environment for workers at industrial (construction) sites. Therefore, there is a need to manage workers' departure from the safety zone (construction zone) and to facilitate communication within the construction zone. In this study, a mobile edge computing CCTV system is proposed that uses geofencing to determine whether workers are working in the danger zone, which can judge and respond in real-time to the ever-changing field environment. The proposed system is mobile and flexible, rather than server-based fixed CCTV. However, since it is designed mainly based on images, it has limitations in recognition rate depending on the environment such as distance, viewing angle, and illumination. As a way to compensate for this, it is required to develop more reliable equipment by combining technologies such as LiDAR and Radar.

  • PDF