• Title/Summary/Keyword: Edge clustering

Search Result 100, Processing Time 0.031 seconds

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

Influence of trailing edge serration in the wake characteristics of S809 airfoil

  • Mano Sekar;Amjad Ali Pasha;Nadaraja Pillai Subramania
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The wake behavior of extended flat plate and serration in the trailing edge of S809 airfoil is presented in this experimental study using wind tunnel testing. The clustering of wind turbines in wind parks has recently been a pressing issue, due to the expected increase in power output and deciding the number of wind turbines to be installed. One of the prominent factors which influence the performance of the subsequent wind turbines is the downstream wake characteristics. A series of wind tunnel investigations were performed to assess the downstream near wake characteristics of the S809 airfoil at various angles of attack corresponding to the Reynolds Number Re = 2.02 × 105. These experimental results revealed the complex nature of the downstream near wake characteristics featuring substantial asymmetry arising out of the incoherent flow separations prevailing over the suction and the pressure sides of the airfoil. Based on the experimental results, it is found that the wake width and the downstream velocity ratio decrease with an increase in the angle of attack. Nonetheless, the dissipation length and downstream velocity ratio increases proportionally in the downstream direction. Additionally, attempts were made to understand the physical nature of the near wake characteristics at 1C, 2C, 3C and 4C downstream locations.

Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm (유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화)

  • Ha, Seong-Wook;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.109-120
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAX clustering algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action and spatial relationship of the pixels as the parameters of its objective function. But the conventional segmentation methods for edge extraction generally need the mask information for the algebraic model, and take long run times at mask operation, whereas the proposed algorithm has single operation according to active searching of fuzzy worms. In addition, we also propose both genetic fuzzy worm searching and genetic min-max clustering using genetic algorithm to complete clustering and fuzzy searching on grey-histogram of image for the optimum solution, which can automatically determine the size of ranges and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

An Effective Steel Plate Detection Using Eigenvalue Analysis (고유값 분석을 이용한 효과적인 후판 인식)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1033-1039
    • /
    • 2012
  • In this paper, a simple and robust algorithm is proposed for detecting each steel plate from a image which contains several steel plates. Steel plate is characterized by line edge, so line detection is a fundamental task for analyzing and understanding of steel plate images. To detect the line edge, the proposed algorithm uses the small eigenvalue analysis. The proposed approach scans an input edge image from the top left corner to the bottom right corner with a moving mask. A covariance matrix of a set of edge pixels over a connected region within the mask is determined and then the statistical and geometrical properties of the small eigenvalue of the matrix are explored for the purpose of straight line detection. Using the detected line edges, each plate is determined based on the directional information and the distance information of the line edges. The results of the experiments emphasize that the proposed algorithm detects each steel plate from a image effectively.

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

Feature Extraction of Welds from Industrial Computed Radiography Using Image Analysis and Local Statistic Line-Clustering (산업용 CR 영상분석과 국부확률 선군집화에 의한 용접특징추출)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.103-110
    • /
    • 2008
  • A reliable extraction of welded area is the precedent task before the detection of weld defects in industrial radiography. This paper describes an attempt to detect and extract the welded features of steel tubes from the computed radiography(CR) images. The statistical properties are first analyzed on over 160 sample radiographic images which represent either weld or non-weld area to identify the differences between them. The analysis is then proceeded by pattern classification to determine the clustering parameters. These parameters are the width, the functional match, and continuity. The observed weld image is processed line by line to calculate these parameters for each flexible moving window in line image pixel set. The local statistic line-clustering method is used as the classifier to recognize each window data as weld or non-weld cluster. The sequential procedure is to track the edge lines between two distinct regions by iterative calculation of threshold, and it results in extracting the weld feature. Our methodology is concluded to be effective after experiment with CR weld images.

Text extraction in images using simplify color and edges pattern analysis (색상 단순화와 윤곽선 패턴 분석을 통한 이미지에서의 글자추출)

  • Yang, Jae-Ho;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a text extraction method by pattern analysis on contour for effective text detection in image. Text extraction algorithms using edge based methods show good performance in images with simple backgrounds, The images of complex background has a poor performance shortcomings. The proposed method simplifies the color of the image by using K-means clustering in the preprocessing process to detect the character region in the image. Enhance the boundaries of the object through the High pass filter to improve the inaccuracy of the boundary of the object in the color simplification process. Then, by using the difference between the expansion and erosion of the morphology technique, the edges of the object is detected, and the character candidate region is discriminated by analyzing the pattern of the contour portion of the acquired region to remove the unnecessary region (picture, background). As a final result, we have shown that the characters included in the candidate character region are extracted by removing unnecessary regions.

A Dynamic Resource Allocation Method in Tactical Network Environments Based on Graph Clustering (전술 네트워크 환경에서 그래프 클러스터링 방법을 이용한 동적 자원 할당 방법)

  • Kim, MinHyeop;Ko, In-Young;Lee, Choon-Woo
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.569-579
    • /
    • 2014
  • In a tactical-edge environment, where multiple weapon resources are coordinated together via services, it is essential to make an efficient binding between an abstract service and a resource that are needed to execute composite services for accomplishing a given mission. However, the tactical network that is used in military operation has low bandwidth and a high rate of packet loss. Therefore, communication overhead between services must be minimized to execute composite services in a stable manner in the tactical network. In addition, a tactical-edge environment changes dynamically, and it affects the connectivity and bandwidth of the tactical network. To deal with these characteristics of the tactical network we propose two service-resource reallocation methods which minimize the communication overhead between service gateways and effectively manage neutralization of gateways during distributed service coordination. We compared the effectiveness of these two - methods in terms of total communication overhead between service gateways and resource-allocation similarity between the initial resource allocation and the reallocation result.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

Hierarchical Grouping of Line Segments for Building Model Generation (건물 형태 발생을 위한 3차원 선소의 계층적 군집화)

  • Han, Ji-Ho;Park, Dong-Chul;Woo, Dong-Min;Jeong, Tai-Kyeong;Lee, Yun-Sik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • A novel approach for the reconstruction of 3D building model from aerial image data is proposed in this paper. In this approach, a Centroid Neural Network (CNN) with a metric of line segments is proposed for connecting low-level linear structures. After the straight lines are extracted from an edge image using the CNN, rectangular boundaries are then found by using an edge-based grouping approach. In order to avoid producing unrealistic building models from grouping lined segments, a hierarchical grouping method is proposed in this paper. The proposed hierarchical grouping method is evaluated with a set of aerial image data in the experiment. The results show that the proposed method can be successfully applied for the reconstruction of 3D building model from satellite images.