• 제목/요약/키워드: Edge and boundary effects

검색결과 101건 처리시간 0.032초

복수어업에 있어서의 어업관리수단 평가를 위한 생물경제학적 연구 -미국 멕시코만의 red grouper와 yellowedge grouper 복수어업을 사례로- (A Bioeconomic Analysis on the Evaluation of Alternative Management Policies in the Multispecies Fishery)

  • 김도훈
    • 수산경영론집
    • /
    • 제35권1호
    • /
    • pp.1-22
    • /
    • 2004
  • Since the red grouper stock was initially declared to be overfished by the NMFS in September 2002, the Gulf of Mexico Fishery Management Council must prepare for the red grouper rebuilding plan considering the following alternative management policies: Total Allowable Catch(TAC), 5 - month season closure, 1800 - pound trip limit, and 50 - fathom longline boundary. The first concern the Council has is to evaluate the effects of recommended policies and the second is to analyze the impact of management policies on yellow edge grouper. This is because the fleets harvest red grouper also catch yellowedge grouper, the regulations on red grouper are likely to allow fishing effort to be distributed into yellowedge grouper. Therefore, this study is aimed at evaluating the biological and economic effects of management policies considering simultaneously the impact of red grouper regulations on yellow edge grouper by developing a combined red grouper and yellowedge grouper bioeconomic model. The overall results indicate that management policies for red grouper would adversely affect the yellowedge grouper stock if yellowedge grouper is not protected by its regulations. The TAC policy has the most serious impact on the yellowedge grouper stock, while the 1800 - pound trip limit policy minimizes the reduction in the yellowedge grouper stock. However, the target stock size of red grouper is achieved as well as the largest net present value of returns is gained in the TAC policy.

  • PDF

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구 (Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow)

  • 천강우;김준홍;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구 (A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal)

  • 윤공현
    • 대한원격탐사학회지
    • /
    • 제22권2호
    • /
    • pp.123-129
    • /
    • 2006
  • 고해상도 컬러항공영상은 공간정보생성을 위한 지형의 상세한 정량적 및 정성적 정보를 제공해준다. 하지만 도심지역에서 빌딩 또는 숲에 의한 그림자의 발생으로 인하여 지물 추출 및 분류시 부정확한 결과를 초래 시킬 수 있다. 현재까지 그림자 효과에 대한 여러 연구가 이뤄졌으나 도심지에서 그림자의 발생으로 야기된 분광정보 왜곡의 문제점을 해결하여 도로추출에 대한 연구가 매우 부족한 실정이다 본 연구에서는 컬러항공사진과 LIDAR(LIght Detection and Ranging) 고도 자료를 이용하여 아스팔트 도로 경계선을 추출하는 기법을 제안하였다. 구체적으로 그림자 영향의 제거를 통한 아스팔트 도로 경계선의 추출과정은 다음과 같다. 첫 번째, 항공사진에서 그림자 영역을 LIDAR자료부터 생성된 DSM(Digital Surface Model)과 태양각으로부터 추출하였다. 그 후 도로영역추출기법, 경계선 검출기법을 통하여 도로의 경계를 추출하였으며 이 자료를 벡터화하므로서 GIS벡터의 선분 자료로 생성하였다. 본 연구의 실험결과 제안된 방법은 그림자의 영향을 소거하여 원활한 아스팔트 도로의 경계를 추출하는데 있어서 효과적임을 알 수 있었다.

PIV 기법을 이용한 초음속 평판 경계층의 속도 분포 측정 (Velocity profile measurement of supersonic boundary layer over a flat plate using the PIV technique)

  • 이혁;김영주;변영환;박수형
    • 한국항공우주학회지
    • /
    • 제44권6호
    • /
    • pp.477-483
    • /
    • 2016
  • 본 연구는 Particle Image Velocimetry(PIV) 기법을 이용하여 마하수 2.96의 평판에 대해 층류, 천이, 난류 경계층의 속도 분포를 측정하였다. Schlieren 가시화 기법과 PIV 기법을 이용하여 앞전에서 발생한 경사 충격파가 평판 위의 유동장에 영향을 주는지 확인하였다. 층류 경계층의 경우, 실험에서 측정한 속도 분포가 압축성 Blasius 속도 분포를 만족하였다. 천이 경계층의 속도 분포는 벽면 부근부터 이론적인 난류 속도 분포로 변했으며, Re = $1.41{\times}10^6$에서 천이가 시작되었다. 난류 경계층 영역에서는 압축성 효과를 고려한 Van Driest 변환 속도가 비압축성 로그 법칙을 만족하였다. 또한 로그 구간이 끝나는 위치($y/{\delta}{\approx}0.28$)가 비압축성 난류 경계층($y/{\delta}{\approx}0.2$)에 비해 벽면에서 더 멀어진 것을 확인하였다.

Mn3O4 함량에 따른 ZnO의 결함과 입계 특성 (Defects and Grain Boundary Properties of ZnO with Mn3O4 Contents)

  • 홍연우;신효순;여동훈;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제24권12호
    • /
    • pp.962-968
    • /
    • 2011
  • In this study, we investigated the effects of Mn dopant (0.1~3.0 at% $Mn_3O_4$ sintered at 1000$^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and grain boundary properties of ZnO, ZM(0.1~3.0) using admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). As a result, three kinds of defect were found below the conduction band edge of ZnO as 0.09~0.14 eV (attractive coulombic center), 0.22~25 eV ($Zn^{{\cdot}{\cdot}}_i$), and 0.32~0.33 eV ($V^{\cdot}_o$). The oxygen vacancy increased with Mn doping. In ZM, an electrically single grain boundary as double Schottky barrier was formed with 0.82~1.0 eV of activation energies by IS & MS. We also find out that the barriers of grain boundary of Mn-doped ZnO (${\alpha}$-factor=0.13) were more stabilized and homogenized with temperature compared to pure ZnO.

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Application of FEM on first ply failure of composite hypar shells with various edge conditions

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.423-441
    • /
    • 2019
  • This study aims to accurately predict the first ply failure loads of laminated composite hypar shell roofs with different boundary conditions. The geometrically nonlinear finite element method (FEM) is used to analyse different symmetric and anti-symmetric, cross and angle ply shells. The first ply failure loads are obtained through different well-established failure criteria including Puck's criterion along with the serviceability criterion of deflection. The close agreement of the published and present results for different validation problems proves the correctness of the finite element model used in the present study. The effects of edge conditions on first ply failure behavior are discussed critically from practical engineering point of view. Factor of safety values and failure zones are also reported to suggest design and non-destructive monitoring guidelines to practicing engineers. Apart from these, the present study indicates the rank wise relative performances of different shell options. The study establishes that the angle ply laminates in general perform better than the cross ply ones. Among the stacking sequences considered here, three layered symmetric angle ply laminates offer the highest first ply failure load. The probable failure zones on the different shell surfaces, identified in this paper, are the areas where non-destructive health monitoring may be restricted to. The contributions made through this paper are expected to serve as important design aids to engineers engaged in composite hypar shell design and construction.