• Title/Summary/Keyword: Edge Weights

Search Result 95, Processing Time 0.025 seconds

Error Resilient IPC Algorithm for Noisy Image (잡음영상에 강한 IPC(Interlace to Progressive Conversion) 알고리즘)

  • Kim, Young-Ro;Hong, Byung-Ki
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, we propose a new IPC(Interlace to Progressive Conversion) method based on ELA(EDge Line based Average) interpolation using detecting the reliable edge direction. Existing ELA algorithms execute linear interpolation using edge direction without considering noises. In noisy images, these algorithms degrade quality because if interpolation based on the wrong edge direction. Out scheme is able to solve the problem of existing ELA algorithms in noisy images. First, filter a noisy pixel and estimate sizes of the noiseless orginal pixed and the noise, repectively. Then, considering the size of the noise, calculate weights of ELA and vertical interpolation. If noises exist after IPC, these could be eliminated by post filtering. The experimental results show that our proposed algorithm has about $1{\sim}2$ dB better performance than those of existing ELA algorithms.

Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images (형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지)

  • Kim, Hwisong;Kim, Duk-jin;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.793-810
    • /
    • 2022
  • Synthetic Aperture Radar (SAR) is considered to be suitable for near real-time inundation monitoring. The distinctly different intensity between water and land makes it adequate for waterbody detection, but the intrinsic speckle noise and variable intensity of SAR images decrease the accuracy of waterbody detection. In this study, we suggest two modules, named 'morphology module' and 'edge-enhanced module', which are the combinations of pooling layers and convolutional layers, improving the accuracy of waterbody detection. The morphology module is composed of min-pooling layers and max-pooling layers, which shows the effect of morphological transformation. The edge-enhanced module is composed of convolution layers, which has the fixed weights of the traditional edge detection algorithm. After comparing the accuracy of various versions of each module for U-Net, we found that the optimal combination is the case that the morphology module of min-pooling and successive layers of min-pooling and max-pooling, and the edge-enhanced module of Scharr filter were the inputs of conv9. This morphologic and edge-enhanced U-Net improved the F1-score by 9.81% than the original U-Net. Qualitative inspection showed that our model has capability of detecting small-sized waterbody and detailed edge of water, which are the distinct advancement of the model presented in this research, compared to the original U-Net.

Edge Enhanced Error Diffusion Halftoning Method Using Local Activity Measure (공간활성도를 이용한 에지 강조 오차확산법)

  • Kwak Nae-Joung;Ahn Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.313-321
    • /
    • 2005
  • Digital halftoning is a process to produce a binary image so that the original image and its binary counterpart appear similar when observed from a distance. Among digital halftoning methods, error diffusion is a procedure for generating high quality bilevel images from continuous-tone images but blurs the edge information in the bilevel images. To solve this problem, we propose the improved error diffusion using local spatial information of the original images. Based on the fact that the human vision perceives not a pixel but local mean of input image, we compute edge enhancement information(EEI) by appling the ratio of a pixel and its adjacent pixels to local mean. The weights applied to local means is computed using the ratio of local activity measure(LAM) to the difference between input pixels of 3$\times$3 blocks and theirs mean. LAM is the measure of luminance changes in local regions and is obtained by adding the square of the difference between input pixels of 3$\times$3 blocks and theirs mean. We add the value to a input pixel of quantizer to enhance edge. The performance of the proposed method is compared with conventional methods by measuring the edge correlation. The halftone images by using the proposed method show better quality due to the enhanced edge. And the detailed edge is preserved in the halftone images by using the proposed method. Also the proposed method improves the quality of halftone images because unpleasant patterns for human visual system are reduced.

  • PDF

Image Restoration Algorithm Damaged by Mixed Noise using Fuzzy Weights and Noise Judgment (퍼지 가중치와 잡음판단을 이용한 복합잡음에 훼손된 영상의 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.133-135
    • /
    • 2022
  • With the development of IoT and AI technologies and media, various digital devices are being used, and unmanned and automation is progressing rapidly. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. However, noise present in the image affects processes such as edge detection and object recognition, and causes deterioration of system accuracy and reliability. In this paper, we propose a filtering algorithm using fuzzy weights to reconstruct images damaged by complex noise. The proposed algorithm obtains a reference value using noise judgment and calculates the final output by applying a fuzzy weight. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared with the existing filter algorithm and evaluated.

  • PDF

Depth Upsampler Using Color and Depth Weight (색상정보와 깊이정보 가중치를 이용한 깊이영상 업샘플러)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.431-438
    • /
    • 2016
  • In this paper, we present an upsampling technique for depth map image using color and depth weights. First, we construct a high-resolution image using the bilinear interpolation technique. Next, we detect a common edge region using RGB color space, HSV color space, and depth image. If an interpolated pixel belongs to the common edge region, we calculate weighting values of color and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

A Study on Image Restoration using Mean and Wiener Filter (평균 및 위너 필터를 사용한 영상 복원에 관한 연구)

  • Moon Hong-Deuk;Kang Kyeong-Deog;Bae Sang-Bum;Kim Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1393-1398
    • /
    • 2004
  • Image is degraded by several causes such as the process of acquisition, storage and transmission. To restore those images, many researches have been continued. Centrally methods to restore degraded image by AWGN(additive white gaussian noise) a.e mean filter and wiener filter. Especially, mean filter is superior in noise reduction of area that is a small change of luminosity. But mean filter brings about the effect smoothing edge components of the image, because it does'nt consider characteristics of the image. So in this paper we propose an image restoration method compounding respective images adding established weights, after filtering with mean filter and powerful wiener filter in both improvement of contrast and preservation of edge components.

A Video Cache Replacement Scheme based on Local Video Popularity and Video Size for MEC Servers

  • Liu, Pingshan;Liu, Shaoxing;Cai, Zhangjing;Lu, Dianjie;Huang, Guimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3043-3067
    • /
    • 2022
  • With the mobile traffic in the network increases exponentially, multi-access edge computing (MEC) develops rapidly. MEC servers are deployed geo-distribution, which serve many mobile terminals locally to improve users' QoE (Quality of Experience). When the cache space of a MEC server is full, how to replace the cached videos is an important problem. The problem is also called the cache replacement problem, which becomes more complex due to the dynamic video popularity and the varied video sizes. Therefore, we proposed a new cache replacement scheme based on local video popularity and video size to solve the cache replacement problem of MEC servers. First, we built a local video popularity model, which is composed of a popularity rise model and a popularity attenuation model. Furthermore, the popularity attenuation model incorporates a frequency-dependent attenuation model and a frequency-independent attenuation model. Second, we formulated a utility based on local video popularity and video size. Moreover, the weights of local video popularity and video size were quantitatively analyzed by using the information entropy. Finally, we conducted extensive simulation experiments based on the proposed scheme and some compared schemes. The simulation results showed that our proposed scheme performs better than the compared schemes in terms of hit rate, average delay, and server load under different network configurations.

Automatic Meniscus Segmentation from Knee MR Images using Multi-atlas-based Locally-weighted Voting and Patch-based Edge Feature Classification (무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중 투표 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할)

  • Kim, SoonBeen;Kim, Hyeonjin;Hong, Helen;Wang, Joon Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.4
    • /
    • pp.29-38
    • /
    • 2018
  • In this paper, we propose an automatic segmentation method of meniscus in knee MR images by automatic meniscus localization, multi-atlas-based locally-weighted voting, and patch-based edge feature classification. First, after segmenting the bone and knee articular cartilage, the volume of interest of the meniscus is automatically localized. Second, the meniscus is segmented by multi-atlas-based locally-weighted voting taking into account the weights of shape and intensity distribution in the volume of interest of the meniscus. Finally, to remove leakage to the collateral ligaments with similar intensity, meniscus is refined using patch-based edge feature classification considering shape and distance weights. Dice similarity coefficient between proposed method and manual segmentation were 80.13% of medial meniscus and 80.81 % for lateral meniscus, and showed better results of 7.25% for medial meniscus and 1.31% for lateral meniscus compared to the multi-atlas-based locally-weighted voting.

Improved Nonlocal Means Algorithm for Image Denoising (영상 잡음 제거를 위해 개선된 비지역적 평균 알고리즘)

  • Park, Sang-Wook;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.46-53
    • /
    • 2011
  • Nonlocal means denoising algorithm is one of the most widely used denoising algorithm. Because it performs well, and the theoretic idea is intuitive and simple. However the conventional nonlocal means algorithm has still some problems such as noise remaining in the denoised flat region and blurring artifacts in the denoised edge and pattern region. Thus many improved algorithms based on nonlocal means have been proposed. In this paper, we proposed new improved nonlocal means denoising algorithm by weight update through weights sorting and newly defined threshold. Updated weights can make weights more refined and definite, and denoising is possible without that artifacts. Experimental results including comparisons with conventional algorithms for various noise levels and test images show the proposed algorithm has a good performance in both visual and quantitative criteria.

Adaptive weight approach for stereo matching (적응적 가중치를 이용한 스테레오 정합 기법)

  • Yoon, Hee-Joo;Hwang, Young-Chul;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.73-76
    • /
    • 2008
  • We present a area-based method for stereo matching using varying weights. A central problem in a area-based stereo matching is different result from selecting a window size. Most of the previous window-based methods iteratively update windows. However, the iterative methods very sensitive the initial disparity estimation and are computationally expensive. To resolve this problem, we proposed a new function to assign weights to pixels using features. To begin with, we extract features in a given stereo images based on edge. We adjust the weights of the pixels in a given window based on correlation of the stereo images. Then, we match pixels in a given window between the reference and target images of a stereo pair. The proposed method is compared to existing matching strategies using both synthetic and real images. The experimental results show the improved accuracy of the proposed method.

  • PDF