• Title/Summary/Keyword: Edge Segment

Search Result 122, Processing Time 0.02 seconds

Segmentation of Computed Tomography using The Geometric Active Contour Model (기하학적 동적 외곽선 모델을 이용한 X-ray 단층촬영영상의 영상추출)

  • Jang, D.P.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.541-545
    • /
    • 1997
  • This paper presents a modified geometric active contour model or edge detection and segmentation of computed tomography(CT) scan images. The method is based on the level setup approach developed by Osher and Sethian and the modeling of propagation fronts with curvature dependent speeds by Malladi. Based on above algorithms, the geometric active contour is obtained through a particular level set of hypersurface lowing along its gradient force and curvature force. This technique retains the attractive feature which is topological and geometric flexibility of the contour in recovering objects with complex shapes and unknown topologies. But there are limitations in this algorithm which are being not able to separate the object with weak difference from neighbor object. So we use speed limitation filter to overcome those problems. We apply a 2D model to various synthetic cases and the three cases of real CT scan images in order to segment objects with complicated shapes and topologies. From the results, the presented model confirms that it attracts very naturally and efficiently to the desired feature of CT scan images.

  • PDF

An Adaptive Pseudomedian Filter for the Ultrasound Medical Image Processing (진단 초음파 영상 처리를 위한 적응 Pseudomedian 필터)

  • Eo, Jin-Woo;Hur, Eun-Seok
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.271-280
    • /
    • 2003
  • This paper presents an effective method to segment objects from the ultrasound medical image which is inherently corrupted by speckle noise. In order to reduce the speckle noise morphological opening was used as preprocessing. For the preprocessed image, sample variance of neighborhood pixels is to be computed to classify where the pixel is located on the edge region or homogeneous region. Then pseudomedian filtering with different window size is taken according to the region classified, named adaptive pseudomedian filter. Various experimental results were presented to prove superiority of the proposed filter.

  • PDF

Line Segment Detection Algorithm Using Improved PPHT (개선된 PPHT를 이용한 선분 인식 알고리즘)

  • Lee, Chanho;Moon, Ji-hyun;Nguyen, Duy Phuong
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • The detection rate of Progressive Probability Hough Transform(PPHT) is decreased when a lot of noise components exist due to an unclear or complex original image although it is quite a good algorithm that detects line segments accurately. In order to solve the problem, we propose an improved line detecting algorithm which is robust to noise components and recovers slightly damaged edges. The proposed algorithm is based on PPHT and traces a line segments by pixel and checks of it is straight. It increases the detection rate by reducing the effect of noise components and by recovering edge patterns within a limited pixel size. The proposed algorithm is applied to a lane detection method and the false positive detection rate is decreased by 30% and the line detection rate is increased by 15%.

A Real-time Vehicle Localization Algorithm for Autonomous Parking System (자율 주차 시스템을 위한 실시간 차량 추출 알고리즘)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

Image Segmentation Algorithm for Fish Object Extraction (어류객체 추출을 위한 영상분할 알고리즘)

  • Ahn, Soo-Hong;Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1819-1826
    • /
    • 2010
  • This paper proposes the image segmentation algorithm to extracts a fish object from a fish image for fish image retrieval. The conventional algorithm using gray level similarity causes wrong image segmentation result in the boundary area of the object and the background with similar gray level. The proposed algorithm uses the reinforced edge and the adaptive block-based threshold for the boundary area with weak contrast and the virtual object to improve the eroded or disconnected object in the boundary area without contrast. The simulation results show that the percentage of extracting the visual-fine object from the test images is under 90% in the conventional algorithm while it is 97.7% in the proposed algorithms.

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.

Automatic Left Ventricle Segmentation by Edge Classification and Region Growing on Cardiac MRI (심장 자기공명영상의 에지 분류 및 영역 확장 기법을 통한 자동 좌심실 분할 알고리즘)

  • Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.507-516
    • /
    • 2008
  • Cardiac disease is the leading cause of death in the world. Quantification of cardiac function is performed by manually calculating blood volume and ejection fraction in routine clinical practice, but it requires high computational costs. In this study, an automatic left ventricle (LV) segmentation algorithm using short-axis cine cardiac MRI is presented. We compensate coil sensitivity of magnitude images depending on coil location, classify edge information after extracting edges, and segment LV by applying region-growing segmentation. We design a weighting function for intensity signal and calculate a blood volume of LV considering partial voxel effects. Using cardiac cine SSFP of 38 subjects with Cornell University IRB approval, we compared our algorithm to manual contour tracing and MASS software. Without partial volume effects, we achieved segmentation accuracy of $3.3mL{\pm}5.8$ (standard deviation) and $3.2mL{\pm}4.3$ in diastolic and systolic phases, respectively. With partial volume effects, the accuracy was $19.1mL{\pm}8.8$ and $10.3mL{\pm}6.1$ in diastolic and systolic phases, respectively. Also in ejection fraction, the accuracy was $-1.3%{\pm}2.6$ and $-2.1%{\pm}2.4$ without and with partial volume effects, respectively. Results support that the proposed algorithm is exact and useful for clinical practice.

Finite element analysis of effectiveness of lever arm in lingual sliding mechanics (Lingual sliding mechanics의 lever arm 효과에 대한 유한요소분석)

  • Kim, Kyeong-Hee;Lee, Kee-Joon;Cha, Jung-Yul;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.324-336
    • /
    • 2011
  • Objective: The aim of this study was to conduct three-dimensional finite element analysis of individual tooth displacement and stress distribution when a posterior retraction force of 200 g was applied at different positions of the retraction hook on the transpalatal arch (TPA) of a molar, and over different lengths of the lever arm on the maxillary anterior teeth in lingual orthodontics. Methods: A three-dimensional finite element model, including the entire upper dentition, periodontal ligaments, and alveolar bones, was constructed on the basis of a sample (Nissan Dental Product, Kyoto, Japan) survey of Asian adults. Individual movement of the incisal edge and root apex was estimated along the x-, y-, and z-coordinates to analyze tooth displacement and von Mises stress distribution. Results: When the length of the lever arm was 15 mm and 20 mm, the incisal edge and root apex of the anterior teeth was displaced lingually, with a maximum lingual displacement at the lever arm length of 20 mm. When the posterior retraction hook was on the root apex, the molars showed distal displacement. When the length of the lever arm was 20 mm, anterior extrusion was reduced and the crown of the canine displaced toward the buccal side, in which case, the retraction hook was on the edge, rather than at the center, of the TPA. Conclusions: The results of the analysis showed that when 6 anterior teeth were retracted posteriorly, lateral displacement of the canine and lingual displacement of the incisal edge and root apex of the anterior teeth occur without the extrusion of the anterior segment when the length of the lever arm is longer, and the posterior retraction hook is in the midpalatal area.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.