네트워크 공격 대응에 관한 보안기술의 기존 연구들은 하드웨어적 네트워크 보안 기술을 이용하여 네트워크의 보안성을 높이는 방법이나 바이러스 방역 백신과 바이러스 방역 시스템이 주로 제안 설계되어왔다. 많은 사용자는 라우터의 보안 기능을 충분히 활용하지 못하고 있어 이러한 문제점을 극복하기 위해 네트워크 보안 수준에 따라 분리함으로써 계층화된 보안 관리를 통하여 외부에서의 공격을 차단할 수 있음을 계층별 실험을 통해 분류하였다. 연구의 범위는 Edge 라우터의 보안기술 동향을 살펴봄으로 Edge 라우터 기반의 네트워크 공격에 관한 위협으로부터 보호하는 방법과 구현 사례를 제시한다.
Survivability of a network is one of the most important issues in designing present-day communication networks. the k-edge survivability of a given network is defined as the percentage of total traffic surviving the worst case failure of k edges. Although several researches calculated k-edge survivability on small networks by enumeration, prior research has considered how to calculate k-edge survivability on large networks. In this paper, we develop an efficient procedure to obtain lower and upper bounds on the k-edge survivability of a network.
Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.
최근 빅데이터와 AI를 이용한 연구들이 ICT 분야에서 주요 이슈로 부상하고 있다. 하지만 연구를 위한 빅데이터의 크기가 기하급수적으로 증가하면서 기존 네트워크 방식의 데이터 전송에 대해 사용자들은 빅데이터를 송수신하는데 걸리는 시간은 하드디스크를 복사하여 보내는 시간보다 느리다는 문제를 제기한다. 이에 따라 연구자들은데이터를 고속으로 전송하고, 다양한 네트워크의 구조를 수용할 수 있는 동적이고 유연한 네트워크 기술을 요구한다. SDN/NFV 기술은 네트워크를 프로그래밍하여 사용자들의 요구에 적절한 네트워크를 제공할 수 있는 기술로써, 네트워크의 유연성 및 보안성 문제를 해결할 수 있다. 또한 AI를 수행하는데 있어 문제가 되는 중앙집중적 방식의데이터 처리는 실시간성을 보장할 수 없고, 트래픽이 증가하는 경우 네트워크 지연이 발생한다. 이를 해결하기 위해 중앙집중적 방식을 탈피한 Edge-Computing 기술을 이용하여 해결할 수 있다. 본 논문에서는 SDN, NFV, Edge-Computing 기술에 대한 개념 및 연구 동향에 대해 알아보고, 세 가지 기술을 접목시켜 사용되는 데이터 중심 네트워크 기술 동향에 대해 분석한다.
최근 무선이동 통신기술 및 임베디드 시스템 기술의 발달과 더불어 그 적용성이 크게 확대되고 있는 MANET을 연구함에 있어서, 에지코스트(Edge Cost)에 기반한 MANET의 특징을 표현할 수 있는 모델링기법을 도입하여 네트워크의 상태변화에 따른 전달성능의 변화를 관찰한 연구결과를 제시하였다. 에지코스트 기반의 모델링 방법론은 4 가지의 에지상태를 통해 어느 한 시점에서의 네트워크의 상태를 표현하는 방법이다. 이러한 에지코스트 기반의 모델링에 Real Edge/Infinity Edge 개념 도입과 네트워크 내에 서로 다른 종류의 전달 프로토콜간 연동기능 도입을 가정하여 10개 시나리오의 대상 네트워크를 구분하여 DEVSim++ 엔진을 통해 시뮬레이션하였다. 그 결과 서로 다른 전달 프로토콜간 연동기능은, 네트워크에 포함된 전달 프로토콜의 종류와 연동기능 노드의 수가 많을수록 전달성능 향상 기여도가 높은 결과를 보였다.
In this study, self-organized neural network is used to solve the vorrespondence problem of the axial stereo image. Edge points are extracted from a pair of stereo images and then the edge points of rear image are assined to the output nodes of neural network. In the matching process, the two input nodes of neural networks are supplied with the coordi- nates of the edge point selected randomly from the front image. This input data activate optimal output node and its neighbor nodes whose coordinates are thought to be correspondence point for the present input data, and then their weights are allowed to updated. After several iterations of updating, the weights whose coordinates represent rear edge point are converged to the coordinates of the correspondence points in the front image. Because of the feature map properties of self-organized neural network, noise-free and smoothed depth data can be achieved.
에지검출은 영상처리와 컴퓨터비젼의 매우 중요한 연구분야이다. 그리고 일반적인 에지검출 연산자인 Robert, Sobel, Kirsh등의 연산자는 계단에지를 검출하는데는 적합하나 잡음에 매우 민감한 단점을 가지고 있다. 따라서 본 논문에서는 영상정보척도와 신경회로망을 이용한 잡음에 매우 강한 계단에지 검출방법을 제안한다. 계단에지의 명암도 분포의 차, 방향성, 연속성, 구조성 등의 계단에지의 기본적인 정보특성을 이용한 함수를 BP 신경회로망의 입력벡터로 구성한 결과 매우 위치가 정확한 계단에지를 얻을 수 있었다. 또한 실험 영상으로 장미 영상과 세포영상을 사용하여 매우 만족스런 실험 결과를 얻을 수 있었다.
Journal of information and communication convergence engineering
/
제18권3호
/
pp.183-187
/
2020
The general Wi-Fi network connection structure is that a number of IoT (Internet of Things) sensor nodes are directly connected to one AP (Access Point) node. In this structure, the range of the network that can be established within the specified specifications such as the range of signal strength (RSSI) to which the AP node can connect and the maximum connection capacity is limited. To overcome these limitations, multiple middleware bridge technologies for dynamic scalability and load balancing were studied. However, these network expansion technologies have difficulties in terms of the rules and conditions of AP nodes installed during the initial network deployment phase In this paper, an intelligent edge computing IoT device is developed for constructing an intelligent autonomous cluster edge computing network and applying it to real-time road danger context aware and notification system through an intelligent risk situation recognition algorithm.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권3호
/
pp.877-893
/
2022
With the development of deep learning, face inpainting has been significantly enhanced in the past few years. Although image inpainting framework integrated with generative adversarial network or attention mechanism enhanced the semantic understanding among facial components, the issues of reconstruction on corrupted regions are still worthy to explore, such as blurred edge structure, excessive smoothness, unreasonable semantic understanding and visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for image inpainting. The architecture involves two steps: Firstly, structure information obtained by edge generation network is used as the prior knowledge for face inpainting network. Secondly, both the generated prior knowledge and the incomplete image are fed into the face inpainting network together to get the fusion information. To improve the accuracy of inpainting, both of gated convolution and region normalization are applied in our proposed model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. The experimental results demonstrate that the edge structure and details of facial images can be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 4.3%.
We designed and fabricated a vision chip for edge detection with a $160{\times}120$ pixel array by using 0.35 ${\mu}m$ standard complementary metal-oxide-semiconductor (CMOS) technology. The designed vision chip is based on a retinal structure with a resistive network to improve the speed of operation. To improve the quality of final edge images, we applied a saturating resistive circuit to the resistive network. The light-adaptation mechanism of the edge detection circuit was quantitatively analyzed using a simple model of the saturating resistive element. To verify improvement, we compared the simulation results of the proposed circuit to the results of previous circuits.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.