• Title/Summary/Keyword: Edge Feature Image

Search Result 323, Processing Time 0.018 seconds

An Algorithim for Converting 2D Face Image into 3D Model (얼굴 2D 이미지의 3D 모델 변환 알고리즘)

  • Choi, Tae-Jun;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • Recently, the spread of 3D printers has been increasing the demand for 3D models. However, the creation of 3D models should have a trained specialist using specialized softwares. This paper is about an algorithm to produce a 3D model from a single sheet of two-dimensional front face photograph, so that ordinary people can easily create 3D models. The background and the foreground are separated from a photo and predetermined constant number vertices are placed on the seperated foreground 2D image at a same interval. The arranged vertex location are extended in three dimensions by using the gray level of the pixel on the vertex and the characteristics of eyebrows and nose of the nomal human face. The separating method of the foreground and the background uses the edge information of the silhouette. The AdaBoost algorithm using the Haar-like feature is also employed to find the location of the eyes and nose. The 3D models obtained by using this algorithm are good enough to use for 3D printing even though some manual treatment might be required a little bit. The algorithm will be useful for providing 3D contents in conjunction with the spread of 3D printers.

A Study on Face Recognition using Neural Networks and Characteristics Extraction based on Differential Image and DCT (차영상과 DCT 기반 특징 추출과 신경망을 이용한 얼굴 인식에 관한 연구)

  • 임춘환;고낙용;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1549-1557
    • /
    • 1999
  • In this paper, we propose a face recognition algorithm based on the differential image method-DCT This algorithm uses neural networks which is flexible for noise. Using the same condition (same luminous intensity and same distance from the fixed CCD camera to human face), we have captured two images. One doesn't contain human face. The other contains human face. Differential image method is used to separate the second image into face region and background region. After that, we have extracted square area from the face region, which is based on the edge distribution. This square region is used as the characteristics region of human face. It contains the eye bows, the eyes, the nose, and the mouth. After executing DCT for this square region, we have extracted the feature vectors. The feature vectors were normalized and used as the input vectors of the neural network. Simulation results show 100% recognition rate when face images were learned and 92.25% recognition rate when face images weren't learned for 30 persons.

  • PDF

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

A Study on Enhancing the Performance of Detecting Lip Feature Points for Facial Expression Recognition Based on AAM (AAM 기반 얼굴 표정 인식을 위한 입술 특징점 검출 성능 향상 연구)

  • Han, Eun-Jung;Kang, Byung-Jun;Park, Kang-Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.299-308
    • /
    • 2009
  • AAM(Active Appearance Model) is an algorithm to extract face feature points with statistical models of shape and texture information based on PCA(Principal Component Analysis). This method is widely used for face recognition, face modeling and expression recognition. However, the detection performance of AAM algorithm is sensitive to initial value and the AAM method has the problem that detection error is increased when an input image is quite different from training data. Especially, the algorithm shows high accuracy in case of closed lips but the detection error is increased in case of opened lips and deformed lips according to the facial expression of user. To solve these problems, we propose the improved AAM algorithm using lip feature points which is extracted based on a new lip detection algorithm. In this paper, we select a searching region based on the face feature points which are detected by AAM algorithm. And lip corner points are extracted by using Canny edge detection and histogram projection method in the selected searching region. Then, lip region is accurately detected by combining color and edge information of lip in the searching region which is adjusted based on the position of the detected lip corners. Based on that, the accuracy and processing speed of lip detection are improved. Experimental results showed that the RMS(Root Mean Square) error of the proposed method was reduced as much as 4.21 pixels compared to that only using AAM algorithm.

CRF-Based Figure/Ground Segmentation with Pixel-Level Sparse Coding and Neighborhood Interactions

  • Zhang, Lihe;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this paper, we propose a new approach to learning a discriminative model for figure/ground segmentation by incorporating the bag-of-features and conditional random field (CRF) techniques. We advocate the use of image patches instead of superpixels as the basic processing unit. The latter has a homogeneous appearance and adheres to object boundaries, while an image patch often contains more discriminative information (e.g., local image structure) to distinguish its categories. We use pixel-level sparse coding to represent an image patch. With the proposed feature representation, the unary classifier achieves a considerable binary segmentation performance. Further, we integrate unary and pairwise potentials into the CRF model to refine the segmentation results. The pairwise potentials include color and texture potentials with neighborhood interactions, and an edge potential. High segmentation accuracy is demonstrated on three benchmark datasets: the Weizmann horse dataset, the VOC2006 cow dataset, and the MSRC multiclass dataset. Extensive experiments show that the proposed approach performs favorably against the state-of-the-art approaches.

Content-based Retrieval System using Image Shape Features (영상 형태 특징을 이용한 내용 기반 검색 시스템)

  • 황병곤;정성호;이상열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • In this paper, we present an image retrieval system using shape features. The preprocessing to gain shape feature includes edge extraction using chain code. The shape features consist of center of mass, standard deviation, ratio of major axis and minor axis length. The similarity is estimated as comparing the features of query image with the features of images in database. Thus, the candidates of images are retrieved according to the order of similarity. The result of an experimentation is dullness for scale, rotation and translation. We evaluate the performance of shape features for image retrieval on a database with over 170 images. The Recall and the Precision is each 0.72 and 0.83 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry

  • Aliyu, Ibrahim;Gana, Kolo Jonathan;Musa, Aibinu Abiodun;Adegboye, Mutiu Adesina;Lim, Chang Gyoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4866-4888
    • /
    • 2020
  • One major and time-consuming task in fish production is obtaining an accurate estimate of the number of fish produced. In most Nigerian farms, fish counting is performed manually. Digital image processing (DIP) is an inexpensive solution, but its accuracy is affected by noise, overlapping fish, and interfering objects. This study developed a catfish recognition and counting algorithm that introduces detection before counting and consists of six steps: image acquisition, pre-processing, segmentation, feature extraction, recognition, and counting. Images were acquired and pre-processed. The segmentation was performed by applying three methods: image binarization using Otsu thresholding, morphological operations using fill hole, dilation, and opening operations, and boundary segmentation using edge detection. The boundary features were extracted using a chain code algorithm and Fourier descriptors (CH-FD), which were used to train an artificial neural network (ANN) to perform the recognition. The new counting approach, based on the geometry of the fish, was applied to determine the number of fish and was found to be suitable for counting fish of any size and handling overlap. The accuracies of the segmentation algorithm, boundary pixel and Fourier descriptors (BD-FD), and the proposed CH-FD method were 90.34%, 96.6%, and 100% respectively. The proposed counting algorithm demonstrated 100% accuracy.

An Evaluation and Combination of Noise Reduction Filtering and Edge Detection Filtering for the Feature Element Selection in Stereo Matching (스테레오 정합 특징 요소 선택을 위한 잡음 감소 필터링과 에지 검출 필터링의 성능 평가와 결합)

  • Moon, Chang-Gi;Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.273-285
    • /
    • 2007
  • Most stereo matching methods use intensity values in small image patches to measure the correspondence between two points. If the noisy pixels are used in computing the corresponding point, the matching performance becomes low. For this reason, the noise plays a critical role in determining the matching performance. In this paper, we propose a method for combining intensity and edge filters robust to the noise in order to improve the performance of stereo matching using high resolution satellite imagery. We used intensity filters such as Mean, Median, Midpoint and Gaussian filter and edge filters such as Gradient, Roberts, Prewitt, Sobel and Laplacian filter. To evaluate the performance of intensity and edge filters, experiments were carried out on both synthetic images and satellite images with uniform or gaussian noise. Then each filter was ranked based on its performance. Among the intensity and edge filters, Median and Sobel filter showed best performance while Midpoint and Laplacian filter showed worst result. We used Ikonos satellite stereo imagery in the experiments and the matching method using Median and Sobel filter showed better matching results than other filter combinations.

A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability (표적분할 신뢰도 값 기반의 형태특징과 지역특징을 이용한 차량표적 분류기법 연구)

  • Yang, DongWon;Lee, Yonghun;Kwak, Dongmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • To classify the vehicle targets automatically using thermal images, there are usually two main categories of feature extraction method, local and shape feature extraction methods. Since thermal images have less texture information than color images, the shape feature extraction method is useful when the segmentation results are correct. However, if there are some errors in target segmentation, the shape feature may contain some errors, then the classification accuracy can be decreased. To overcome these problems, in this paper, we propose the segmentation reliability estimation method for target classification. The segmentation reliability can be estimated by using the difference information of average intensities and edge energies between the target and the background area. The estimated segmentation reliability is applied in the decision level fusion method of classification results using both shape and local features. Experiment results using the thermal images of the vehicle targets (main battle tank, armored personnel carrier, military truck, and an estate car) show that the proposed classification method and the segmentation reliability estimation method have a good performance in classification accuracy.