• Title/Summary/Keyword: Edge Direction

Search Result 720, Processing Time 0.028 seconds

Indirect Method for Measurement of Tool Edge Roughness in flat End Mill (평 엔드밀 공구인선부 조도의 간접적인 측정법)

  • Kim, Jeon-Ha;Gang, Myeong-Chang;Kim, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.92-98
    • /
    • 2002
  • End mill is an essential tool to generate complex surface in workpiece and it has been developed with various materials and tool shapes. The most important factor to evaluate the performance of end mill is still the wear characteristics of flank face. In addition to the flank wear, the tool edge roughness generated by the chipping is another important factor in aspects of material property and machinability evaluation and affects the quality of machined surface. Up to now, there is no direct method for measurement of tool edge roughness. In this study, the tool edge roughness of flat end mill is indirectly measured along the axial direction of workpiece. The theoretical equation is derived in consideration of tool geometry. Finally, the optimal conditions to measure the tool edge roughness by the proposed method are presented through the theoretical review and experimental identification.

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

A Study on Edge Detection Algorithm using Modified Mask of Weighting (변형된 가중치 마스크를 이용한 에지검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.735-741
    • /
    • 2014
  • Edge in images appears when a great difference shows up in light and shade between pixels and includes data of the subject's size, location direction and etc. The edge is generally detected by the methods such as Sobel, Roberts, Laplacian, LoG(Laplacian of Gaussian) and etc. However, in AWGN(additive white Gaussian noise) added images, quality of the edge becomes slightly uncertain. Therefore, this paper proposed edge detection algorithm using modified mask of weighting to improve the quality of the existing methods. And in order to verify the performance efficiency of the proposed method, processed image and PFOM(Pratt's figure of merit) has been used as valuation standard for a comparison with the existing methods.

A Study on Edge Detection Method using Modified Directional Masks (변형된 방향성 마스크를 이용한 에지검출 방법에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2779-2785
    • /
    • 2014
  • Edge Detection is a technique that obtains the particular information of the image using the brightness variation of pixel values and utilized for preprocessing in various image processing sectors. The conventional edge detection methods such as Sobel, Prewitt and Roberts are processed by applying the same weighted value to the entire pixels regardless of pixel distrbution and provides somewhat insufficient edge detection results. therefore, this paper has proposed an edge detection method considering the direction and magnitute of pixels by applying a modified directional mask.

[Li]/[Nb]조성비 변화에 따른 iron-doped $LiNbO_3$ 결정의 특성분석

  • 한지웅;원종원;오근호
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.111-115
    • /
    • 1997
  • Iron-doped LiNbO$_3$ crystals were grown by floating zone(FZ) method with different [Li]/[Nb] ratio in order to investigate doping effects of transition metal impurity in LiNbO$_3$ crystal. The grown crystals were analyized edge in UV/VIS/IR spectrometry and EPMA(electron probe micro-analysis). The absorption edge in UV-VIS region and OH-absorption peak in IR region were investigated. The change of Fe concentration along the solidification direction was also investigated

  • PDF

Characteristics of Rotational Vibration of Cutting Edge in Elliptical Vibration Cutting by Modulation of Excitation Frequency (타원궤적 절삭기의 가진주파수에 따른 절삭 날 회전 진동 특성)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • The direction of the cutting tool plays a critical role in elliptical vibration cutting(EVC) where the cutting tool cuts workpiece in a trochoidal motion. In this study, EVC cutting device was developed using two parallel piezoelectric materials and it was observed that the rotation direction of the tool reverses as the EVC device undergoes resonance at which either flexural(cutting direction) or longitudinal( thrust direction) mode shapes occurs. To analytically explain reversal of the rotation direction, kinematic motion analysis of the tool was modified to incorporate amplification of the vibration amplitude and phase introduced by resonance. It successfully demonstrated, through Matlab simulation, reversal of the rotation direction of the cutting tool as the excitation frequency increases beyond resonance frequencies at which either flexural or longitudinal vibration occurs.

Design of Navigation Algorithm for Mobile Robot using Sensor fusion (센서 합성을 이용한 자율이동로봇의 주행 알고리즘 설계)

  • Kim Jung-Hoon;Kim young-Joong;Lim Myo-Teag
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.703-713
    • /
    • 2004
  • This paper presents the new obstacle avoidance method that is composed of vision and sonar sensors, also a navigation algorithm is proposed. Sonar sensors provide poor information because the angular resolution of each sonar sensor is not exact. So they are not suitable to detect relative direction of obstacles. In addition, it is not easy to detect the obstacle by vision sensors because of an image disturbance. In This paper, the new obstacle direction measurement method that is composed of sonar sensors for exact distance information and vision sensors for abundance information. The modified splitting/merging algorithm is proposed, and it is robuster for an image disturbance than the edge detecting algorithm, and it is efficient for grouping of the obstacle. In order to verify our proposed algorithm, we compare the proposed algorithm with the edge detecting algorithm via experiments. The direction of obstacle and the relative distance are used for the inputs of the fuzzy controller. We design the angular velocity controllers for obstacle avoidance and for navigation to center in corridor, respectively. In order to verify stability and effectiveness of our proposed method, it is apply to a vision and sonar based mobile robot navigation system.

Study on the thickness precision of rolled sheets (압연판의 두께 정밀도에 관한 연구)

  • 김동원;윤상건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.837-845
    • /
    • 1987
  • In the research of the rolling of strip, producing the strip with a close tolerance of thickness over the rolling direction was a principal object. But it was solved by the contribution of two-dimensional theory of rolling and the development of automatic gauge control system. And new requirements for the study of flatness, crown of rolled strip and edge drop grow up recently. These phenomena are closely related with the thickness distribution along the lateral direction of rolled strip. To analyse the thickness distribution of rolled strip along the lateral direction, elastic deformation of rolls and plastic deformation of work material must be discussed simultaneously. In this report, an approximate three-dimensional analysis based on Tozawa's three dimensional approach was applied to 12 cases of different rolling conditions and the numerical results were investigated. Especially stresses were laid upon the investigation of optimal boundary position between the three-dimensional analysis region and the plane strain analysis region.

Experiment Analysis of the Burr Formation on the Inclined Exit Surface in Drilling (경사진 출구면에서 드릴 버 형성에 관한 실험적 고찰)

  • Kim, Byung-Kwon;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.47-53
    • /
    • 2006
  • An Experiment was carried out to find the scheme far minimization of burr formation on inclined exit surface in drilling. Several drills with different geometry are used for drilling the workpiece with inclined exit surface. Step drills are specified with step angle and step size. The influence of the inclination angle of exit surface on burr formation was observed, which enables to analyze the burr formation mechanism on inclined exit surface. Along the edge on the inclined exit surface, burrs are formed by the bending deflection to feed direction and also burrs are formed in exit direction of cutting edge. To minimize the burr formed in feed direction, the corner angle which is formed by the inclination angle and step angle must be large enough not to be bent to burr. By decreasing step angle of drill and decreasing the distance between two axes of two holes, burr formation at the intersecting holes can be minimized. Burr formation mechanisms are analyzed according to the drill geometries and cutting conditions. Several schemes far burr minimization on inclined exit surface were proposed.

Lane Detection Based on a Cumulative Distribution function of Edge Direction (에지 방향의 누적분포함수에 기반한 차선인식)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2814-2818
    • /
    • 2000
  • This paper describes an image processing algorithm capable of recognizing the road lane using a CDF (Cumulative Distribution Function). which is designed for the model function of the road lane. The CDF has distinctive peak points at the vicinity of the lane direction because of the directional and positional continuities of the lane. We construct a scatter diagram by collecting the edge pixels with the direction corresponding to the peak point of the CDF and carry out the principal axis-based line fitting for the scatter diagram to obtain the lane information. As noises play the role of making a lot of similar features to the lane appear and disappear in the image we introduce a recursive estimator of the function to reduce the noise effect and a scene understanding index (SUI) formulated by statistical parameters of the CDF to prevent a false alarm or miss detection. The proposed algorithm has been implemented in a real time on the video data obtained from a test vehicle driven in a typical highway.

  • PDF