• Title/Summary/Keyword: Edge Computation

Search Result 237, Processing Time 0.027 seconds

Effects of the Low Reynolds Number on the Loss Characteristics in a Transonic Axial Compressor

  • Choi, Min-Suk;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.202-212
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the loss characteristics in a transonic axial compressor, Rotor67. As a gas turbine becomes smaller in size and it is operated at high altitude, the operating condition frequently lies at low Reynolds number. It is generally known that wall boundary layers are thickened and a large separation occurs on the blade surface in axial turbomachinery as the Reynolds number decreases. In this study, it was found that the large viscosity did not affect on the bow shock at the leading edge but significantly did on the location and the intensity of the passage shock. The passage shock moved upstream towards leading edge and its intensity decreased at the low Reynolds number. This change had large effects on the performance as well as the internal flows such as the pressure distribution on the blade surface, tip leakage flow and separation. The total pressure rise and the adiabatic efficiency decreased about 3% individually at the same normalized mass flow rate at the low Reynolds number. In order to analyze this performance drop caused by the low Reynolds number, the total pressure loss was scrutinized through major loss categories such as profile loss, tip leakage loss, endwall loss and shock loss.

  • PDF

A RANS modeling of backward-facing step turbulent flow in an open channel (개수로에서의 후향단차 난류 흐름 RANS 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • The backward-facing step (BFS) is a benchmark geometry for analyzing flow separation occurred at the edge and resulting development of shear layer and recirculation zone that are occupied by turbulent flow. It is important to accurately reproduce and analyze the mean flow and turbulence statistics of such flows to design physically stable and performance assurance structure. We carried out 3D RANS computations with widely used, two representative turbulence models, k-ω SST and RNG k-ε, to reproduce BFS flow at the Reynolds number of 23,000 and the Froude number of 0.22. The performance of RANS computations is evaluated by comparing numerical results with an experimental measurement. Both RANS computations with two turbulence models appear to reasonably well reproduce mean flow in the shear layer and recirculation zone, while RNG k-ε computation results in about 5% larger velocity between the outer edge of boundary layer and the free surface above the recirculation zone than k-ω SST computation and experiment. Both turbulence models underestimate the shear stress distribution experimentally observed just downstream of the sharp edge of BFS, while shear stresses computed in the boundary layer downstream of reattachment point are agree reasonably well with experimental measurement. RNG k-ε modeling reproduces better shear stress distribution along the bottom boundary layer, but overestimates shear shear stress in the approaching boundary layer and above the bottom boundary layer downstream of the BFS.

Adaptive Extended Bilateral Motion Estimation Considering Block Type and Frame Motion Activity (블록의 성질과 프레임 움직임을 고려한 적응적 확장 블록을 사용하는 프레임율 증강 기법)

  • Park, Daejun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.342-348
    • /
    • 2013
  • In this paper, a novel frame rate up conversion (FRUC) algorithm using adaptive extended bilateral motion estimation (AEBME) is proposed. Conventionally, extended bilateral motion estimation (EBME) conducts dual motion estimation (ME) processes on the same region, therefore involves high complexity. However, in this proposed scheme, a novel block type matching procedure is suggested to accelerate the ME procedure. We calculate the edge information using sobel mask, and the calculated edge information is used in block type matching procedure. Based on the block type matching, decision will be made whether to use EBME. Motion vector smoothing (MVS) is adopted to detect outliers and correct outliers in the motion vector field. Finally, overlapped block motion compensation (OBMC) and motion compensated frame interpolation (MCFI) are adopted to interpolate the intermediate frame in which OBMC is employed adaptively based on frame motion activity. Experimental results show that this proposed algorithm has outstanding performance and fast computation comparing with EBME.

JND based Illumination and Color Restoration Using Edge-preserving Filter (JND와 경계 보호 평탄화 필터를 이용한 휘도 및 색상 복원)

  • Han, Hee-Chul;Sohn, Kwan-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.132-145
    • /
    • 2009
  • We present the framework for JND based Illumination and Color Restoration Using Edge-preserving filter for restoring distorted images taken under the arbitrary lighting conditions. The proposed method is effective for appropriate illumination compensation, vivid color restoration, artifacts suppression, automatic parameter estimation, and low computation cost for HW implementation. We show the efficiency of the mean shift filter and sigma filter for illumination compensation with small spread parameter while considering the processing time and removing the artifacts such as HALO and noise amplification. The suggested CRF (color restoration filter) can restore the natural color and correct color distortion artifact more perceptually compared with current solutions. For the automatic processing, the image statistics analysis finds suitable parameter using JND and all constants are pre-defined. We also introduce the ROI-based parameter estimation dealing with small shadow area against spacious well-exposed background in an image for the touch-screen camera. The object evaluation is performed by CMC, CIEde2000, PSNR, SSIM, and 3D CIELAB gamut with state-of-the-art research and existing commercial solutions.

Vector Quantization Codebook Design Using Unbalanced Binary Tree and DCT Coefficients (불균형 이진트리와 DCT 계수를 이용한 벡터양자화 코드북)

  • 이경환;최정현;이법기;정원식;김경규;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2342-2348
    • /
    • 1999
  • DCT-based codebook design using binary tree was proposed to reduce computation time and to solve the initial codebook problem. In this method, DCT coefficient of training vectors that has maximum variance is to be a split key and the mean of coefficients at the location is used as split threshold, then balanced binary tree for final codebook is formed. However edge degradation appears in the reconstructed image, since the blocks of shade region are frequently selected for codevector. In this paper, we propose DCT-based vector quantization codebook design using unbalanced binary tree. Above all, the node that has the largest split key is splited. So the number of edge codevector can be increased. From the simulation results, this method reconstructs the edge region sincerely and shows higher PSNR than previous methods.

  • PDF

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.

Performance Analysis of Hough Transform Using Extended Lookup Table (확장 참조표를 활용한 허프변환의 성능 분석)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1868-1873
    • /
    • 2021
  • This paper proposes the Hough transform(HT) using an extended lookup table(LUT) to reduce the computational burden of the HT that is a typical straight line detection algorithm, and analyzes its performance. The conventional HT also uses a LUT to the calculation of the parameter 𝜌 of all straight lines passing through an edge pixel of interest(ePel) in order to reduce the computational burden. However, the proposed HT adopts an extended LUT that can be applied to straight lines across the ePel as well as its peripheral edge pixels to induce more computational reduction. This paper proves the validity of the proposed algorithm mathematically and also verifies it through simulation. The simulation results show that the proposed HT reduces the multiplication computation from 49.6% up to 16.1%, depending on the image and the applied extended LUT, compared to the conventional HT.

CAD Optimisation of The Planocentric Gears From EHL(elasto-hydrodynamic lubrication) Concept (EHL 개념을 도입한 PLANOCENTRIC GEATS 장치의 설계 최적화)

  • 권오관;이성철;김이범
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.69-79
    • /
    • 1985
  • EHD(elastohydrodynamic) lubrication theories are applied to analyse the contact characteristies between the circular are profiled teeth of the plano-wheel gear and the cylindrical pin type teeth of the inner gear for the planocentric gears unit, For improving lubrication characteristic and contact frictional interference between the teeth, a new design method of optimising continuous meshing position is introduced, and the new tooth profile which is modified as a rounded curvature of the edge of circular arc is also suggested. The results of mathematical computation from conventional and the modified gear unit are compared, respectively.

Shock Reflection and Penetration Impinging into a Vortex (I) - Experimental Model- (와동에 입사하는 충격파의 반사 및 투과(I))

  • Jang, Se-Myeong;Jang, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1311-1318
    • /
    • 2002
  • An experimental model is investigated in this paper using the experimental method with a shock tube and the numerical technique. The shock-vortex interaction generated by this model is visualized with various methods: holographic interferometry, shodowgraphy, and numerical computation. In terms of shock dynamics, there are two meaningful physics in the present problem. They are reflective wave from the slip layer at the vortex edge and transmitted shock penetrating the vortex core. The discussion in this study is mainly focused on the two kinds of waves contributing to the quadrupolar pressure distribution around the vortex center during the interaction.

High-Performance Spatial and Temporal Error-Concealment Algorithms for Block-Based Video Coding Techniques

  • Hsu, Ching-Ting;Chen, Mei-Juan;Liao, Wen-Wei;Lo, Shen-Yi
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • A compressed video bitstream is sensitive to errors that may severely degrade the reconstructed images even when the bit error rate is small. One approach to combat the impact of such errors is the use of error concealment at the decoder without increasing the bit rate or changing the encoder. For spatial-error concealment, we propose a method featuring edge continuity and texture preservation as well as low computation to reconstruct more visually acceptable images. Aiming at temporal error concealment, we propose a two-step algorithm based on block matching principles in which the assumption of smooth and uniform motion for some adjacent blocks is adopted. As simulation results show, the proposed spatial and temporal methods provide better reconstruction quality for damaged images than other methods.

  • PDF