• 제목/요약/키워드: Edge Cloud Computing

검색결과 135건 처리시간 0.022초

REDUCING LATENCY IN SMART MANUFACTURING SERVICE SYSTEM USING EDGE COMPUTING

  • Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
    • Journal of Platform Technology
    • /
    • 제9권1호
    • /
    • pp.15-22
    • /
    • 2021
  • In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system

클라우드 기반 RFID 시스템에 관한 연구 (A Study on RFID System Based on Cloud)

  • 이철승
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1145-1150
    • /
    • 2020
  • 다보스 포럼 이후 최근 4차 산업혁명은 전 세계의 국가들의 관심을 갖는 분야가 되고 있다. 4차 산업혁명의 기술 중 유비쿼터스 컴퓨팅 환경은 각종 디바이스, 네트워크 및 소프트웨어 기술의 융합 환경을 필요로 하며, IoT 기술 분야 중 사물을 식별하는 RFID 기술은 산업 전 분야에 응용되고 있으며 경쟁력을 갖추고 있다. RFID 기술을 응용한 시스템은 다양한 산업분야에서 이용되고 있고, 특히! 유통, 물류 분야에서 정확한 재고관리와 SCM 관리에 매우 효율적으로 사용되고 있다. RFID 시스템을 클라우드 기반의 환경으로 구축했을 경우 효과적인 물류관리 시스템과 경제성을 고려하여 유통관리에 신뢰성을 확보할 수 있을 것이다. 본 연구는 클라우드 컴퓨팅 환경에서 RFID 시스템에 관한 연구로 응용 서버를 운영하거나 유지 보수하는 비용을 줄여 경제성과 신뢰성을 향상 시킬 수 있도록 연구한다.

음향 기반 물 사용 활동 감지용 엣지 컴퓨팅 시스템 (The Edge Computing System for the Detection of Water Usage Activities with Sound Classification)

  • 현승호;지영준
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.147-156
    • /
    • 2023
  • Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.

Linux File Systems에 따른 SQLite3 데이터베이스의 검색 성능 비교 (Comparison of Search Performance of SQLite3 Database by Linux File Systems)

  • 최진오
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2022
  • 최근 IoT 센서를 이용하여 데이터를 로컬에서 생산하고 스트림으로 제공하는 엣지 컴퓨팅(Edge Computing) 응용 분야가 넓어지고 있다. 대량으로 생산된 데이터는 실시간 처리를 위해 모바일 장치의 데이터베이스에 저장했다가 필요한 시점에 서버와 동기화된다. 이러한 응용 분야를 지원하기 위한 다양한 모바일 데이터베이스가 개발되었다. CloudScape, DB2 Everyplace, ASA, PointBase Mobile 등이며 그중 가장 널리 사용되는 대표적 모바일 데이터베이스는 리눅스 기반 SQLite3이다. 이 논문에서는 서버와 동기화 시 필요한 성능에 초점을 맞추었다. SQLite3의 정보 선택 시 필요한 검색 성능을 데이터베이스가 저장된 각 리눅스 파일 시스템의 종류에 따라 비교 분석하였다. 그래서 다양한 검색 쿼리 유형에 따라 파일 시스템별로 성능 차이를 확인하고 인덱스 사용 환경과 테이블 스캔 환경에 따라 더 적합한 리눅스 파일 시스템을 적용하는 기준을 마련하고 제시하였다.

자율주행을 위한 MEC 적용 기능의 연구 (A Study on MEC Network Application Functions for Autonomous Driving)

  • 남강현
    • 한국전자통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.427-432
    • /
    • 2023
  • 본 연구에서, MEC(: Multi-access Edge Computing)가 Wave, Lte, 5G 망에서 V2X(: Vehicle to Everything) 를 적용한 자율 자동차의 다양한 시험을 위해서 Cloud 서비스망 구성이 제안되고, MEC App(:Application)은 특정 지역에서 두 가지 도메인(사업자(KT, SKT, LG U+), 망 형태(Wave, LTE(3G 포함), 5G))의 V2X 서비스 기능 시험 검증을 적용하였다. 국내 운영업체(SKT, KT, LG U+ 그리고 Wave)의 4G 망에서, MEC는 독립적인 망 기능을 가져가기 위한 목적으로 V2X 기능 블록과 Traffic Offloading을 통한 개선 효과를 정리하였다. 그리고 5G 망의 V2X VNF에서 높은 수준의 QoS로 값으로, Traffic Steering기능의 시나리오가 목적지별 트래픽 경로상에서 입증되었다.

온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발 (Development of an intelligent edge computing device equipped with on-device AI vision model)

  • 강남희
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.17-22
    • /
    • 2022
  • 본 논문에서는 지능형 엣지 컴퓨팅을 지원할 수 있는 경량 임베디드 기기를 설계하고, 영상 기기로부터 입력되는 이미지에서 객체를 실시간으로 빠르게 검출할 수 있음을 보인다. 제안하는 시스템은 산업 현장이나 군 지역과 같이 사전에 설치된 인프라가 없는 환경에 적용되는 지능형 영상 관제 시스템이나 드론과 같은 자율이동체에 탑재된 영상 보안 시스템에 적용될 수 있다. 지능형 비전 인지 시스템이 확산 적용되기 위해 온디바이스 AI(On-Device Artificial intelligence) 기술 적용 필요성이 증대되고 있다. 영상 데이터 취득 장치에서 가까운 엣지 기기로의 컴퓨팅 오프 로딩은 클라우드를 중심으로 수행되는 인공지능 서비스 대비 적은 네트워크 및 시스템 자원으로도 빠른 서비스 제공이 가능하다. 또한, 다양한 해킹 공격에 취약한 공격 표면의 감소와 민감한 데이터의 유출을 최소화 할 수 있어 다양한 산업에 안전하게 적용될 수 있을것으로 기대된다.

Online Monitoring of Ship Block Construction Equipment Based on the Internet of Things and Public Cloud: Take the Intelligent Tire Frame as an Example

  • Cai, Qiuyan;Jing, Xuwen;Chen, Yu;Liu, Jinfeng;Kang, Chao;Li, Bingqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3970-3990
    • /
    • 2021
  • In view of the problems of insufficient data collection and processing capability of multi-source heterogeneous equipment, and low visibility of equipment status at the ship block construction site. A data collection method for ship block construction equipment based on wireless sensor network (WSN) technology and a data processing method based on edge computing were proposed. Based on the Browser/Server (B/S) architecture and the OneNET platform, an online monitoring system for ship block construction equipment was designed and developed, which realized the visual online monitoring and management of the ship block construction equipment status. Not only that, the feasibility and reliability of the monitoring system were verified by using the intelligent tire frame system as the application object. The research of this project can lay the foundation for the ship block construction equipment management and the ship block intelligent construction, and ultimately improve the quality and efficiency of ship block construction.

X-Ray Security Checkpoint System Using Storage Media Detection Method Based on Deep Learning for Information Security

  • Lee, Han-Sung;Kim Kang-San;Kim, Won-Chan;Woo, Tea-Kun;Jung, Se-Hoon
    • 한국멀티미디어학회논문지
    • /
    • 제25권10호
    • /
    • pp.1433-1447
    • /
    • 2022
  • Recently, as the demand for physical security technology to prevent leakage of technical and business information of companies and public institutions increases, the high tech companies are operating X-ray security checkpoints at building entrances to protect their intellectual property and technology. X-ray security checkpoints are operated to detect cameras and storage media that may store or leak important technologies in the bags of people entering and leaving the building. In this study, we propose an X-ray security checkpoint system that automatically detects a storage medium in an X-ray image using a deep learning based object detection method. The proposed system consists of an edge computing unit and a cloud-computing unit. We employ the RetinaNet for automatic storage media detection in the X-ray security checkpoint images. The proposed approach achieved mAP of 95.92% on private dataset.

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.

6G in the sky: On-demand intelligence at the edge of 3D networks (Invited paper)

  • Strinati, Emilio Calvanese;Barbarossa, Sergio;Choi, Taesang;Pietrabissa, Antonio;Giuseppi, Alessandro;De Santis, Emanuele;Vidal, Josep;Becvar, Zdenek;Haustein, Thomas;Cassiau, Nicolas;Costanzo, Francesca;Kim, Junhyeong;Kim, Ilgyu
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.643-657
    • /
    • 2020
  • Sixth generation will exploit satellite, aerial, and terrestrial platforms jointly to improve radio access capability and unlock the support of on-demand edge cloud services in three-dimensional (3D) space, by incorporating mobile edge computing (MEC) functionalities on aerial platforms and low-orbit satellites. This will extend the MEC support to devices and network elements in the sky and forge a space-borne MEC, enabling intelligent, personalized, and distributed on-demand services. End users will experience the impression of being surrounded by a distributed computer, fulfilling their requests with apparently zero latency. In this paper, we consider an architecture that provides communication, computation, and caching (C3) services on demand, anytime, and everywhere in 3D space, integrating conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and management of aerial devices need to be jointly orchestrated via artificial intelligence-based algorithms, exploiting virtualized network functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.