• 제목/요약/키워드: Edge Chipping

검색결과 33건 처리시간 0.029초

PCD 초경 복합 원형 톱 개발과 공구마모 비교 (Development of Polycrystalline Diamond Tungsten Carbide Combination Circular Saw and Comparison of Tool Wear)

  • 주창민;박윤옥;김수진
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.48-56
    • /
    • 2021
  • Tungsten carbide (WC) circular saws have been widely used to cut plywood. Recently, expensive polycrystalline diamond (PCD) were adopted to extend the tool life of circular saws. This study developed a PCD-WC combination circular saw and compared its performance with that of existing WC and PCD saws. Flank wear of WC saw blades and edge chipping of rectangular PCD was observed during the experiments. The PCD-WC saw replaced half of the chamfered teeth with PCD and applied tough WC for all rectangular teeth. In the experiments, edge chipping was not observed in rectangular WC teeth and the flank wear of chamfered teeth was decreased compared with that of conventional circular saws.

Slot Grinding시 전해 인프로세스 드레싱의 영향에 관한 연구 (Effect of Electrolytic In-process Dressing in Slot Grinding)

  • 유정봉;정해도;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.48-52
    • /
    • 1995
  • Chipping is an unavidable phenomean in the slot grinding process of hard and brittle materials. However,it should be reduced for the improvement of surface integrity in the manufacture of optical and semiconductor components. Electrolytic In-process Dressing (ELID) technique for metal bonded superabrasive grinding wheel has been developed for mirror surface grinding of hard and brittle materials. Electrically dressed wheel surface has sharply exposed abrasives and results in lower grinding force, higher grinding efficiency in grinding. The paper deals with a newly developed method for slot grinding using ELID and was implemented to improve grooved surface quality and decreases chipping size on the edge of the groove. As a result, we accomplished shipping-free grooves and obtained the clear ground sufaces on glass and tungsten carbide.

  • PDF

부분 피복 피니언 공구의 마멸에 관한 연구 (A Study on the Wear of partially coated Pinion Cutter)

  • 김상균;지용권;김인성;조용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.74-79
    • /
    • 1996
  • The wear of partially coated pinion cutters under several cutting conditions was studied. In the realm of this experiment, chipping was a dominant tool wear mechanism and flank wear was much larger than crater wear. Under the condition of relatively low rotary feed and low radial feed rate, the wear due to chipping was concentrated at the nose part of pinion cutter. Increasing of rotary feed and radial feed rate alleviated the concentration of chipping at nose and prolonged tool life.

  • PDF

부분 피복된 HSS 공구의 단속절삭시의 마멸 (Wear of Partially Coated Tool in Interrupted Cutting)

  • 김동욱;조용주;지용권;류병진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.67-72
    • /
    • 1994
  • Tool test was conducted to investigate the were process of only flank face TiN coated HSS tool in interrupted cutting for variuos cutting speeds and feed rates. Flank wear was caused by microchipping at the cutting edge. At high cutting speed, the which was formed as a result of diffusion and abrasion lowered cutting edge and influenced flank were. Flank wear due to chipping was little influenced by cutting speed.

  • PDF

텅스텐 카바이드 공구를 사용한 앤드밀 가공에서 Si3n4-hBN 머시너블 세라믹스의 표면특성과 공구마멸 (Surface Properties and Tool Wear of Si3n4-hBN Machinable Ceramics in Endmill Machining using Tungsten Carbide Tool)

  • 장성민;조명우
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.15-21
    • /
    • 2004
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5, 10, 15, 20, 25 and 30%. The objectives of this paper is to evaluate the fracture phenomenon of the tungsten carbide tool and the variation of surface integrity of the manufactured machinable ceramics under various cutting conditions during end mill machining With CNC machining center.

  • PDF

An investigation on dicing 28-nm node Cu/low-k wafer with a Picosecond Pulse Laser

  • Hsu, Hsiang-Chen;Chu, Li-Ming;Liu, Baojun;Fu, Chih-Chiang
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.63-68
    • /
    • 2014
  • For a nanoscale Cu/low-k wafer, inter-layer dielectric (ILD) and metal layers peelings, cracks, chipping, and delamination are the most common dicing defects by traditional diamond blade saw process. Sidewall void in sawing street is one of the key factors to bring about cracks and chipping. The aim of this research is to evaluate laser grooving & mechanical sawing parameters to eliminate sidewall void and avoid top-side chipping as well as peeling. An ultra-fast pico-second (ps) laser is applied to groove/singulate the 28-nanometer node wafer with Cu/low-k dielectric. A series of comprehensive parametric study on the recipes of input laser power, repetition rate, grooving speed, defocus amount and street index has been conducted to improve the quality of dicing process. The effects of the laser kerf geometry, grooving edge quality and defects are evaluated by using scanning electron microscopy (SEM) and focused ion beam (FIB). Experimental results have shown that the laser grooving technique is capable to improve the quality and yield issues on Cu/low-k wafer dicing process.

초음파타원진동절삭가공법에 의한 Co-Cr-Mo 합금의 경면가공 (Mirror Finishing of Co-Cr-Mo Alloy by Ultrasonic Elliptical Vibration Cutting Method)

  • 송영찬;전중건일;삼협준도
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.56-62
    • /
    • 2008
  • The biocompatibility and the fatigue strength of Co-Cr-Mo alloy are excellent, so it is used well for the material of artificial joints. The head of artificial joint needs mirror surface for reduction of abrasive resistance. Mirror finishing of Co-Cr-Mo alloy with geometrically defined single crystal diamond cutting tools is handicapped by micro chipping of tool edge. In general, it is said that the micro chipping of diamond tool is caused by work hardening of Co-Cr-Mo alloy for the cut. In the present research, mirror finishing of Co-Cr-Mo alloy by applying ultrasonic elliptical vibration cutting was carried out. The experimental results show that the micro chipping of diamond tool was suppressed and the tool wear was remarkably reduced as compared with the ordinary diamond cutting without elliptical vibration motion. It was confirmed that the good mirror surface of maximum surface roughness of 25 nmP-V was obtained for the cutting length of about 14 m. It is expected that mirror finishing of Co-Cr-Mo alloy can be achieved by applying ultrasonic elliptical vibration cutting practically.

MLCC 절단용 초경합금 칼날의 나노표면 가공 기술 (Nano-surface Machining Technology of Tungsten Carbide Blade for MLCC Cutting Process)

  • 강병욱;신건휘;곽태수
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.41-46
    • /
    • 2019
  • The purpose of this study is to examine and propose a high quality blade manufacturing method by applying ELID grinding technology to machining the tungsten carbide blade edge for MLCC sheet cutting. In this study, experiments are performed according to the abrasive type of grinding wheel, grinding method and grinding direction using the non-stop continuous dressing ELID grinding technology. By comparing and analyzing the chipping phenomena and surface roughness of both the blade grinding surface and the processed surface, a method for machining the tungsten carbide blade for cutting MLCC sheet is proposed. From the analysis of the surface roughness and chipping phenomena, it is confirmed that the use of diamond abrasive is advantageous for the blade machining. In addition, it succeeds in the machining of $6{\mu}m$ fine blade without any chipping, by using the grinding wheel #4000 with the diamond abrasive.

열처리한 합금공구강의 절삭에서 공구파손의 특성 (Fracture Characteristics of Cutting Tools in Machining of Hardened Alloy Steel)

  • 노상래;안상옥
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.199-205
    • /
    • 1994
  • The fracture characteristics and tool life of ceramics and WC, CBN cutting tool when turning heat treated steel STD11($H_RC$ 60) were investigated experimentally to clarify the machinability and optimum tool materials in cutting of difficult-to-cut material with high hardness. Forthermore, the behaviors of the tool wear and failure were examined with regard to cutting force. The hardened steel wore the cutting tool edge rapidily and increased the cutting forces, especially radial force. The tool was worn by the abrasive action. Flank Weat of $Al_2O_3-TiC$ ceramic and WC tool become relatively large and CBN & $Al_2O_3$, ceramic tool had a long life among the tool materials tested. The tool fracture patterns were just like minor cutting wear, flank wear, crater wear, notch wear, chipping. Flank wear rate was accelerated by occurrence of chipping. During the proceeding of machining, it was possible to foresee the catastrophic fracture of tool by abrupt increase of radial force.

  • PDF

초경절단공구의 인선결손에 관한 연구 (A Study on the Cutting Edge Chipping of Cemented Carbide Cut-off Tools)

  • 김원일
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.71-77
    • /
    • 1988
  • This study applies dynamic deformation analysis to the rake face stress distribution of cemented carbide cut-off tools by turning, using a finite element method. The results are following: 1. The dynamic loaded state of a cut-off tool was very changeable for the first 0.6 seconds. Reaching the normal state, it became in active. 2. Chipping was influnced not only by the magnitude of stress but also by the abrupt change of tensile and compressive stresses. 3. The distribution chat of principal stress by dynamic load and the direction of resultant vector were almost constant regardless of load time.

  • PDF