• Title/Summary/Keyword: Eddy structure

Search Result 283, Processing Time 0.029 seconds

A Study on the Structure of Turbulent Flow Fields According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation (대규모와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동장 구조에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the structure of turbulent flow fields according to the operating loads of three-dimensional small-size axial fan(SSAF). LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method because static pressure coefficients analysed by LES show a little bit larger than measurements including all flow coefficients. Also, it can be known that the wake of SSAF is divided into from axial flow to radial flow before and behind stall region according to the increase of static pressure through LES analysis.

Braking Characteristic of the Eddy-Current Brake with Permanent Magnet Considering Structure Around (위치변화에 따른 영구자석을 이용한 와전류 제동기의 제동특성)

  • Ha, K.H.;Kim, Y.K.;Hong, J.P.;Kim, G.T.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.305-307
    • /
    • 1999
  • This paper describes the braking performances considering the structures around for the eddy-current brake excited by permanent magnet. As the magnet is excited by permanent magnet, the braking force of this system interferes with the progress of a moving train in normal time. Therefore, it is necessary to determine the reasonable position of eddy current brake from rail. In this paper, the braking force according to the distance from the rail is analyzed by using 2-dimensional finite element method considering the surrounding structure of train.

  • PDF

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

Analysis of the Magnetic Field and Eddy Current Characteristics in Isolated Phase Bus System (상분리 모선의 자계 및 와전류 특성 해석)

  • Kim, Jin-Su;Ha, Deok-Yong;Choe, Seung-Gil;Gang, Hyeong-Bu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.509-516
    • /
    • 2001
  • Isolated phase bus(IPS) has a special structure for carrying large current generated by a generator to a main transformer. In the analysis of IPB, the understanding of the magnetic field distribution generated by large current is important. Especially, while the bus conductor current is flowing, almost same amount of current as bus conductor current is induced in the enclosures under the influence of time varying magnetic field, and therefore the large electric loss and the deterioration of insulating capability might occur due to Joule heating effect. Hence for the optimal design of IPB satisfying the condition to minimize the loss, the accurate analysis of magnetic field distribution and the eddy current characteristics of three phase isolated phase bus have been investigated. In the analysis of time varying magnetic field, instead of finite difference method(FDM) which is generally used, finite element method with phasor concept is investigated under the assumption that the bus current is purely sinusoidal. The characteristics is studied along the phase angle by comparing the effect of eddy current on the magnetic field distribution with the case that eddy current is not considered, and also the effect of material, thickness and radius of enclosure on the eddy current distribution is discussed.

  • PDF

Temporal Variation of Phytoplankton Community Related to Water Column Structure in the Korea Strait

  • Lee, Yong-Woo;Park, Hyun-Je;Choy, Eun-Jung;Kim, Yun-Sook;Kang, Chang-Keun
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.321-329
    • /
    • 2010
  • Photosynthetic pigments, nutrients, and hydrographic variables were examined in order to elucidate the spatio-temporal variation of water column structure and its effect on phytoplankton community structure in the western channel of the Korea Strait in fall 2006 and spring 2007. High phytoplankton biomass in the spring was associated with high salinity, implying that nutrients were not supplied by coastal waters or the Yangtze-River Diluted water (YRDW) with low salinity. Expansion of the Korea Strait Bottom Cold Water (KSBCW) and a cold eddy observed during the spring season might enhance the nutrient supply from the subsurface layer to the euphotic zone. Chemotaxonomic examination showed that diatoms accounted for 60-70% of total biomass, followed by dinoflagellates. Nutrient supply by physical phenomena such as the expansion of the KSBCW and the occurrence of a cold eddy appears to be the controlling factors of phytoplankton community composition in the Korea Strait. Further study is needed to elucidate the mechanisms by which the KSBCW is expanded, and its role in phytoplankton dynamics.

Large Eddy Simulation of a High Subsonic Jet and Noise Generation

  • Fukuda, Yuya;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.612-621
    • /
    • 2008
  • For the purpose of improving accuracy in jet noise prediction and investigating its generation mechanism, high subsonic jets were computed by using compressible Large Eddy Simulation(LES), wherein the inflow forcing or disturbance added in the inflow shear layer was incorporated. The far-field Sound Pressure Levels(SPL) as well as the flow field resulted in good agreement with available experimental data by applying only the high azimuthal modes among the inflow forcing parameters. We found that this result was due to an important role of the inflow forcing upon breaking down the axiymmetric vortices that caused high amplitude velocity and pressure fluctuations. In order to examine generation mechanism of the dominant noise component, wavelet transformation was introduced to reveal the presence of a well-organized structure of pressure fluctuations that originated mainly from vortex motions near the end of the jet potential core. This structure took a train of alternately positive and negative wavelet-transformed pressure regions along the jet distance, spreading towards the downstream with advection and propagation. It was concluded that this structure and its dynamic motion are the reason why a high subsonic jet produces the dominant noise with a particular downstream directivity.

  • PDF

Large eddy simulations of the flow around a circular cylinder: effects of grid resolution and subgrid scale modeling

  • Salvatici, E.;Salvetti, M.V.
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.419-436
    • /
    • 2003
  • Large-eddy simulations of the flow around a circular cylinder at a Reynolds number, based on cylinder diameter and free-stream velocity, $Re_D=2{\times}10^4$ are presented. Three different dynamic subgrid-scale models are used, viz. the dynamic eddy-viscosity model and two different mixed two-parameter models. The sensitivity to grid refinement in the spanwise and radial directions is systematically investigated. For the highest resolution considered, the effects of subgrid-scale modeling are also discussed in detail. In particular, it is shown that SGS modeling has a significant influence on the low-frequency modulations of the aerodynamics loads, which are related to significant changes in the near wake structure.

Simultaneous analysis of concentration and flow fields in a stirred tank using large eddy simulation (대형 와 모사를 사용한 혼합 탱크 내의 농도장과 유동장의 동시 해석)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1972-1979
    • /
    • 2003
  • Transport of a scalar quantity, such as chemical concentration or temperature, is important in many engineering applications and environmental flows. Here we report on results obtained from the large eddy simulations of flow and concentration fields inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius (Yoon et al. $^{(1)}$). This study focused on the concentration development at different molecular diffusivities in a stirred tank operated under turbulent conditions. The main objective of the work presented here is to study the large-scale mixing structure at different molecular diffusivities in a stirred tank by using the large eddy simulation. The time sequence of concentration and flow fields shows the flow dependency of the concentration development. The presence of spatial inhomogenieties is detailed by observing the time variation of local concentration at different positions.

  • PDF

Analysis of Mechanical Fixation Made of Aluminum Alloy in an Axial Flux Permanent Magnet Machine

  • Lee, Jiyoung;Park, Byounggung;Koo, Daehyun
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.309-313
    • /
    • 2014
  • This paper presents an eddy current loss analysis of a Mechanical Fixation (MF) made of 6061 aluminum alloy, which is used for an NS type double-rotor single-stator axial flux permanent magnet machine. The prototype MF made of aluminum alloy shows good mechanical performance, but poor electro-magnetic performance, since the machine's efficiency can decrease because of eddy current loss in the MF. In order to prevent efficiency decrease, a modification of the MF structure is also introduced. Three-dimensional finite element analysis (FEA) is used for magnetic field analysis, and eddy current losses are computed. The analysis results are compared to, and verified by the test results.