• Title/Summary/Keyword: Eddy Dissipation Rate

Search Result 25, Processing Time 0.1 seconds

Numerical Analysis on the Reacting Flow-Field of Coaxial Combustor with a Wedge-Shaped Flame Holder (Wedge형 보염기를 장착한 동축형 연소기의 반응 유동장 수치해석)

  • Ko Hyun;Sung Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.450-454
    • /
    • 2005
  • A numerical analysis is performed to analyze the reacting flow-field of an axisymetric coaxial ramjet combustor. Two dimensional Navier-Stokes equation with low Reynolds number $k-\varepsilon$ turbulence model is utilized and finite-rate chemistry model is adopted. Eddy dissipation model is applied for a modeling of turbulent combustion. Two different types of combustors (combustor with a suddenly expanded dump and combustor with wedge-shaped flame holders) are compared in a view point of flame stabilizing.

  • PDF

Developing of low Reynolds number k-.epsilon. model with improved .epsilon. equation (소산율 방정식의 개선을 통한 저레이놀즈수 k-.epsilon. 모형의 개발)

  • Song, K.;Yoo, G.J.;Cho, K.R.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.685-697
    • /
    • 1998
  • Series of recent k-.epsilon. model modification have been carried out with the aid of DNS data to include the effect of near wall. Though these methods opened new way of turbulence modelings, newly developed turbulence models of its kind had yet shortcomings in prediction for the turbulent flows with various Reynolds numbers and various geometric conditions. As a remedy for these shortcomings, a new k-.epsilon. model proposed here by improving the dissipation rate equation and the damping function for eddy viscosity model. The new dissipation rate equation was modeled based on the energy spectrum and magnitude analysis. The damping function for eddy viscosity was also formulated on the ground of distribution of dissipation rate length scales near a wall and the DNS data. The new k-.epsilon. model was applied to the fully developed turbulent flows in a channel and a pipe with a wide range of Reynolds numbers. Prediction results showed that the present model represents properly the turbulence properties in all turbulent regions over a wide range of Reynolds numbers.

Mixing of Sea Waters in the Northern Part of the East China Sea in Summer (하계 동중국해 북부 해역에서의 해수 혼합)

  • Jang, Sung-Tae;Lee, Jae-Hak;Hong, Chang-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.390-399
    • /
    • 2007
  • In order to investigate the mixing of sea waters on the continental shelf in the northern East China Sea, Korea Ocean Research and Development Institute conducted hydrographic surveys including turbulence measurements using the R/V Eardo in August 2005 and August 2006. The turbulent kinetic energy dissipation rates based on velocity shear measurements are estimated to be $10^{-7}{\sim}10^{4}$, $10^{-7}{\sim}10^{-6}$, and $10^{-7}$ W/kg in the surface layer, bottom layer, and lower thermocline, respectively. The data sets suggest that surface layer water is being constantly mixed by winds. High dissipation rate in the lower thermocline seems to be caused by internal waves. The bottom layer with high dissipation rate also shows high turbidity, indicating the effect of tidal stirring turbulence. The vertical eddy diffusivities are $10^{-3}{\sim}10^{-2}m^2/s$ near the bottom, and these high values appear to arise from both the low stability and high turbulent mixing.

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.

Development of νt-κ-γ Turbulence Model for Computation of Turbulent Flows (난류유동 해석을 위한 νt-κ-γ 모델의 개발)

  • Choi, Won-Chul;Seo, Young-Min;Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1014-1021
    • /
    • 2009
  • A new eddy viscosity equation was formulated from assumption of turbulence length scale equation and specific dissipation ratio equation. Then, a set of turbulence model equations for the turbulent kinetic energy ${\kappa}$, the viscosity ${\nu}_t$, and the intermittency factor ${\gamma}$ is proposed by considering the entrainment effect. Closure coefficients are determined by experimental data and resorting to numerical optimization. Present model has been applied to compute four representative cases of free shear flows and successfully compared with experimental data. In particular, the spreading rate, the centreline mean velocity and the profiles of intermittency are calculated with improved accuracy. Also, the proposed ${\nu}_t-{\kappa}-{\gamma}$ model was applied to channel flow by considering the wall effect and the results show good agreements with the Direct Numerical Simulation data.

A study on the reduction in angle of attack by the constructions in the vicinity of airport runway with crosswind (활주로 주변 건물을 지나는 측풍에 의한 이.착륙 항공기의 받음각 감소에 관한 연구)

  • Hong, Gyo-Young;Sheen, Dong-Jin;Park, Soo-Bok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper illustrates how simulation modeling can be of substantial help in designing constructions in the vicinity of airport runway and presents results about the influence of aircraft wake vortices through computer simulation. The cross-wind energy dissipation rate is estimated from the Y-directional velocity spectrum for a sample in a real meteorological observation data. The eddy region about cross wind in the vicinity of airport runway is highly dependent on the height and shape of the buildings and the AOA of aircraft is greatly influenced by Y-directional velocity occurred by dint of separation region in runway.

  • PDF

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model (2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.714-724
    • /
    • 1985
  • Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

Numerical Studies of Supersonic Planar Mixing and Turbulent Combustion using a Detached Eddy Simulation (DES) Model

  • Vyasaprasath, Krithika;Oh, Sejong;Kim, Kui-Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.560-570
    • /
    • 2015
  • We present a simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in $H_2O$ concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

Numerical Study on Pilot Ratio Effect of Shale-Gas in a Commercial Gas Turbine (상용급 가스터빈에서 셰일가스 파일럿비 영향에 관한 수치해석적 연구)

  • Seo, Dong Kyun;Joo, Yong-Jin;Park, Seik;Kim, Mi-yoeng;Shin, Jugon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.189-195
    • /
    • 2019
  • In this work, the flow and combustion characteristics using a 3-D numerical simulation was evaluated for a shale gas fueled combustor in a commercial class gas turbine. The Standard k-e turbulence model, 2 step methane oxidation mechanism, Finite rate/Eddy dissipation reaction model, DTRM radiation model were employed and validated well at the baseline condition (Natural Gas, Pilot Ratio 0.2). Based on the validated models, the combustion characteristics of shale gas was evaluated for three pilot ratios cases. It was found that NOx concentrations for all shale gas cases were less than the that for city gas, which imply that, at the selected PRs, the condition for combustion stability is satisfied. In addition, for higher PR, whereas the average temperatures at the exit are the same, the NOx increases. It means that diffusion combustion portion increases due to the higher PR.

Influence of Coal Conversion Model and Turbulent Mixing Rate in Numerical Simulation of a Pulverized-coal-fired Boiler (미분탄 보일러 연소 해석에서 석탄 반응 모델 및 난류 혼합 속도의 영향 평가)

  • Yang, Joo-Hyang;Kim, Jung-Eun A.;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2015
  • Investigating coal combustion in a large-scale boiler using computational fluid dynamics (CFD) requires a combination of flow and reaction models. These models include a number of rate constants which are often difficult to determine or validate for particular coals or furnaces. Nonetheless, CFD plays an important role in developing new combustion technologies and improving the operation. In this study, the model selection and rate constants for coal devolatilization, char conversion, and turbulent reaction were evaluated for a commercial wall-firing boiler. The influence of devolatilization and char reaction models was found not significant on the overall temperature distribution and heat transfer rate. However, the difference in the flame shapes near the burners were noticeable. Compared to the coal conversion models, the rate constant used for the eddy dissipation rate of gaseous reactions had a larger influence on the temperature and heat transfer rate. Based on the operation data, a value for the rate constant was recommended.