• Title/Summary/Keyword: Eddy Current Sensor

Search Result 149, Processing Time 0.029 seconds

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

Development of Displacement Sensing System for Precise Control of Linear Motion Guide in Smart Factory (스마트팩토리의 리니어 모션 가이드의 정밀제어를 위한 변위 센싱 시스템 개발)

  • Lee, Suk-Yun;Yoo, Gil-Sang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.659-661
    • /
    • 2022
  • 본 논문에서는 4차 산업의 제조 혁신을 위한 새로운 방안의 스마트 팩토리를 실헌하기 위한 주요 부품 중에 하나인 리니어 모션 가이드(LM 가이드)에 필요한 센싱 시스템을 제안하였다. 공장 자동화와 정밀 측의 핵심 부품인 LM 가이드를 고정밀, 고정도로 제어할 수 있는 변위 센싱 시스템의 개발이다. 기존의 광학식이나 자기식 변위 센서 기술의 한계를 극복할 수 있도록 와전류(Eddy Current) 기법을 이용하여 LC 공진기와 전도체를 LM 가이드에 장착할 수 있도록 제안하였다. 또한 와전류 센싱부에서 출력되는 미세 인덕턴스 값을 측정할 수 있도록 디지털 신호처리 기술과 컴퓨터/산술 기술을 FPGA를 이용한 HW 시스템을 제작하여 다양한 실험을 진행했다. 본 논문에서 구현한 HW 센싱 시스템을 이용함으로 LM 가이드를 실시간으로 직선 이동시킴으로 실시간으로 변위 값을 디스플레이 부로 출력되어 측정이 가능하다. 개발된 시스템은 LM 가이드의 직선 운동시 변위 값의 분해능과 응답속도 면에서 우수함이 확인됨으로 스마트 팩토리 뿐만 아니라 다양한 장비에도 적용이 가능하다.

  • PDF

A Study on Metal Surface Thickness Detection Using Indsctive Proximity Sensor (유도성 근접센서를 통한 금속표면 두께 검출에 관한 연구)

  • Park, Hwa-Beom;Lee, Seung-Jae;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.231-234
    • /
    • 2007
  • The magnetic sensor using electromagnetic principle. which transfers magnatic into electric. is the electric component.It has been widely applied to the industry, university and the reseach. However there are some problems. Not only the korean domestic sensor manufacture skills are still lower then the advanced manufacture's but also production of sensor is not well organized yet. Due to cahnging excitation cvurrent, excitation freq and the rate magnetic permeability core, there sometimes would be distorted phenomena or loaded phenomena which result in limited measurment range. Therefore, the signal conversion device should support to receive undistorted and nice output. This paper focuses on both the design of signal transform circuit using inductive proximity sensor and the signal transfer equipment (Z device) which detects thickness of painted material.

  • PDF

An Application of Solenoid Eddy Current Sensor for Nondestructively Inspecting Deterioration of Overhead Transmission Lines due to Forest Fires (산불에 의한 가공송전선의 열화특성을 비파괴적으로 검출하기 위한 솔레노이드 와류센서의 응용)

  • Kim, Sung-Duck;Kim, Young-Dal;Jeong, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.404-415
    • /
    • 2000
  • This paper describes several performances and nondestructive inspection for deterioration due to forest fires in overhead transmission lines. After discussing corrosion mechanism such as atmospheric and galvanic corrosion for aged ACSR conductors and its detection for them are presented. Through impedance analysis of a solenoid coil, it is shown that the eddy current sensor may be available to inspect severe fault or local corrosion. As the solenoid coil changes its impedance when the test conductor is inserted into the coil, it can be possible to measure deterioration degree caused by forest fires. Tensile strength, extension rate and sensor impedance are tested for some samples degraded by artificial fire. As increasing blazed period to some extent, the strength of aluminum strand begins to be reduced remarkably, while galvanized steel strand holds the similar strength to the initial value, despite of appearing a little loss of zinc layer. In general, it is shown that the sensor impedance would be increased while the tension load of conductor is reduced and the extension rate is contrarily increased. Therefore, the sensor output could exhibit the changes of mechanical performances, and would be used to detect such deterioration caused by forest fire in ACSR conductors built on the ridge of mountains. Finally, it was verified that the solenoid coil could be applicable to obtain any crucial inform for serious deterioration due to forest fires.

  • PDF

Effects of the PIG Draft Velocity on the Defect Signals in MFL NDT System (자기 누설 비파괴 탐상 시스템에서 PIG의 주행속도가 검출신호에 미치는 영향)

  • 박상호;박관수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.475-483
    • /
    • 2003
  • In this paper, dynamic characteristics of the magnetic flux leakage(MFL) type non-destructive testing(NDT) are analyzed. Effects of a sensor speed in MFL PIG system and remanent magnetization of the gas pipeline are analyzed by using 3 dimensional nonlinear finite element analysis including eddy current and hysteresis characteristics. Results show that the speed of the sensor reduces the magnitude of the sensing signals where as the hysteresis of the pipeline distorts the sensing signals.

Controller Design for a Nozzle-flapper Type Servo Valve with Electric Position Sensor

  • Istanto, Iwan;Lee, Ill-yeong;Huh, Jun-young;Lee, Hyun-cheol
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The control performance of hydraulic systems is basically influenced by the performance of electrohydraulic servo valve incorporated in a hydraulic control system. In this study, a control design was proposed to improve the control performance of a servo valve with a non-contact eddy current type position sensor. A mathematical model for the valve was obtained through an experimental identification process. A PI-D control together with a feedforward (FF) control was applied to the valve. To further improve the dynamic response of the servo valve, an input shaping filter (ISF) was incorporated into the valve control system. Finally, the effectiveness of the proposed control system was verified experimentally.

Numerical Design of Shielded Encircling Probe for RFEC Testing of Nuclear Fuel Cladding Tube (핵연료 피복재 튜브의 원격장와전류 탐상을 위한 차폐된 관통형 탐촉자의 수치해석적 설계)

  • Shin, Young-Kil;Shin, Sang-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.650-657
    • /
    • 2001
  • This paper explains the process of designing a shielded encircling remote field eddy current (RFEC) probe to inspect nuclear fuel cladding tubes and investigates resulting signal characteristics. To force electromagnetic energy from exciter coil to penetrate into the tube, exciter coil is shielded outside by laminations of iron insulated electrically from each other. Effects of shielding and the proper operating frequency are studied by the finite element analysis and the location for sensor coil is decided. However, numerically simulated signals using the designed probe do not clearly show the defect indication when the sensor passes a defect and the other indication appeared as the exciter passes the defect is affected by the shape of shielding structure, which demonstrates that the sensor is directly affected by exciter fields. For this reason, the sensor is also shielded outside and this shielding dramatically improves signal characteristics. Numerical modeling with the finally designed probe shows very similar signal characteristics to those of inner diameter RFEC probe. That is, phase signals show almost equal sensitivity to inner diameter and outer diameter defects and the linear relationship between phase signal strength and defect depth is observed.

  • PDF

Application of Amorphous wire to ECT(Eddy Current Testing) Probe (아몰퍼스 와이어의 ECT probe 적용에 대한 검토)

  • Kim, Y.H.;Shin, K.H.;SaGong, Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.47-51
    • /
    • 2002
  • ECT(eddy currentign testing) is very effective technique to detect a flaw within a conductor. Co-based amorphous wire was used as a sensor head. The wire has almost 0 magneto-striction and high permeability. An uniform magnetic field was applied to 1mm thick copper plate and $25{\mu}m$ thick aluminum sheet conductor using spiral typed coil The size of the coil has $40mm{\times}40mm$ outer width and $8mm{\times}8mm$ inner width. The copper plate and aluminum sheet has 0.5mm and 0.1mm wide gap, respectively. The frequency range of applied field was 100kHz-600kHz. The induced voltage difference of 2.5mV was obtained in the maximum voltage and minimum one measured across the gap of the 1mm thick conductor. In the case of aluminum sheet, 0.4mV was obtained. From this results, the effectiveness of Co-based amorphous wire was confirmed in the ECT technique.

  • PDF

Development of In-Service Inspection Techniques for PGSFR (PGSFR 가동중검사기술 개발)

  • Kim, Hoe Woong;Joo, Young Sang;Lee, Young Kyu;Park, Sang Jin;Koo, Gyeong Hoi;Kim, Jong Bum;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.93-100
    • /
    • 2016
  • Since the sodium-cooled fast reactor is operated in a hostile environment due to the use of liquid sodium as its coolant, advanced techniques for in-service inspection are required to periodically verify the integrity of the reactor. This paper presents the development of in-service inspection techniques for Proto-type Generation IV Sodium-cooled Fast Reactor. First, the 10 m long plate-type ultrasonic waveguide sensor has been developed for in-service inspection of reactor internals, and its feasibility was verified through several under-water and under-sodium experiments. Second, the combined inspection system for in-service inspection of ferromagnetic steam generator tubes has been developed. The remote field eddy current testing and magnetic flux leakage testing can be conducted simultaneously by using the developed inspection system, and the detectability was demonstrated through several damage detection experiments. Finally, the electro-magnetic acoustic transducer which can withstand high temperature and be installable in the remote operated vehicle has been developed for in-service inspection of the reactor vessel, and its detectability was investigated through damage detection experiments.