• Title/Summary/Keyword: Eddy

Search Result 2,126, Processing Time 0.031 seconds

Analysis of Characteristics for Bank Scour around Low Dam for Difference of Elevation using 3D Numerical Simulation (상하류 수위차에 따른 3차원 수치모의를 이용한 보 접속부 세굴특성 분석)

  • Jeong, Seok-Il;Yeo, Chang-Geon;Yoon, Kwang-Suk;Lee, Seung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.37-37
    • /
    • 2011
  • 태풍 루사나 매미에 의한 피해사례를 보면 하천 횡단 구조물 본체가 파괴되는 피해 뿐 만 아니라, 구조물과 제방과의 연결부가 세굴되어 붕괴되는 사례가 많이 발생하였다. 하천설계기준(2009)에는 이러한 보와 제방의 연결부 부분을 연결호안이라 하여 관련 기준을 제시하고 있으나, 설치구간의 길이를 정할 때 하천의 규모나 하도의 특성을 고려하지 못하고 일률적으로 결정하도록 하고 있다. 이에 건설기술연구원에서는 상류 Froude 수와 보 높이를 변수로 하는 연결호안 설치 길이에 대한 실험식(2006)을 제시하였다. 하지만 보 접속부 세굴에 영향을 주는 인자는 상류의 Froude 수와 보의 높이 뿐만 아니라, 상 하류 수위차, 보의 형상, 제방의 재료적 특성 등 많은 요인들이 존재한다. 이 중 본 연구에서는 상 하류 수위차와 보 접속부 세굴 범위의 관계를 파악하고자 한다. 보 접속부 세굴에 대한 수치모의에 앞서 Gill(1972)와 Dongol(1990)이 수행하였던 교대세굴 자료를 바탕으로 Flow-3D의 세굴에의 적합성 및 적용성을 검토하였다(그림 2참고). 검토 결과 수치모의의 입력 변수를 조정함으로써 실험값과 가깝게 나타나는 것을 확인하였다. 이렇게 조정된 변수를 이용하여, 보 접속부 세굴에 대한 수치모의는 상 하류의 수위차에 대해 다양한 검토를 하기 위해 상류의 수위를 1.0m로 고정한 채하류부의 수위를 0.2~0.8m까지 0.1m간격으로 변화시켰으며, 유사의 대표 입경은 0.63mm로 주문진 표준사를 가정하였다. 모의 시간은 평형세굴심이 발생할 때까지 수행하였고, 난류모델로는 LES(Large Eddy Simulation)를 채택하였다. 모의 결과 상 하류 수위차가 증가할수록 보 하류부 세굴 길이($L_d$)가 증가 하였으며, 세굴의 폭($B_d$) 역시 증가하였다. 그림 3은 수치모의 결과로 세굴이 발생된 제방의 모습을 도시한 것이다.

  • PDF

A Study on Metal Surface Thickness Detection Using Indsctive Proximity Sensor (유도성 근접센서를 통한 금속표면 두께 검출에 관한 연구)

  • Park, Hwa-Beom;Lee, Seung-Jae;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.231-234
    • /
    • 2007
  • The magnetic sensor using electromagnetic principle. which transfers magnatic into electric. is the electric component.It has been widely applied to the industry, university and the reseach. However there are some problems. Not only the korean domestic sensor manufacture skills are still lower then the advanced manufacture's but also production of sensor is not well organized yet. Due to cahnging excitation cvurrent, excitation freq and the rate magnetic permeability core, there sometimes would be distorted phenomena or loaded phenomena which result in limited measurment range. Therefore, the signal conversion device should support to receive undistorted and nice output. This paper focuses on both the design of signal transform circuit using inductive proximity sensor and the signal transfer equipment (Z device) which detects thickness of painted material.

  • PDF

Separation of Enamel from the Enamel Coated Coper Wires Via High Frequency Induction Process (에나멜코팅된 구리코일로 부터의 친환경적(親環境的) 구리선의 분리(分離))

  • Song, Yong-Ho;Kim, Jeong-Min;Park, Joon-Sik;Kong, Man-Sik;Lee, Caroline Seun-Young
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • Recently, the recycling with environmentally friendly method has been an issue for various fields. An effective removal method of coating layers from coated copper wires is one critical factor for recycling copper wire. We have adopted a high frequency heating routine for removing the coating layers on the coated copper wires, and attempted to find optimum conditions. The experimental results show that the copper wires should be maintained at or above $950^{\circ}C$ for rapid removal of the polyester. The simulation and experimental results are discussed with respect to the microstrucrual evolution during heating of the copper wires.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

Three-Dimensional Laboratory Experiments for Tsunami Inundation in a Coastal City (지진해일 범람이 해안도시에 미치는 영향에 대한 3차원 수리모형실험)

  • Kim, Kyuhan;Park, Hyoungsu;Shin, Sungwon;Cox, Daniel T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.400-403
    • /
    • 2012
  • Laboratory experiments were conducted for tsunami inundation to an urban area with large building roughness. The waterfront portion of the city of Seaside which is located on the US Pacific Northwest coast, was replicated in 1/50 scale in the wave basin. Tsunami heights and velocities on the inundated land were measured at approximately 31 locations for one incident tsunami heights with an inundation height of approximately 10 m (prototype) near the shoreline. The inundation pattern and speed were more severe and faster in some areas due to the arrangement of the large buildings. Momentum fluxes along the roads were estimated using measure tsunami inundation heights and horizontal fluid velocities. As expected, the maximum momentum flux was near the shoreline and decreased landward. Inundation heights and momentum flux were slowly decreased through the road with buildings on each side. The results from this study showed that the horizontal inundation velocity is an important factor for the external force of coastal structures.

Numerical Analysis of the Particle Dispersion by the Variation of the Velocity Ratio in a Mixing Layer (혼합층에서 속도비 변화에 따른 입자확산 유동해석)

  • Seo, Tae Won;Kim, Tae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • The particle dispersion in the turbulent mixing layer has been numerically investigated to clarify the effect of the velocity ratio in the large-scale vortical structures. In this study the LES with subgrid-scale model is employed. The Lagrangian method to predict the particle motion is applied. The particles of 10, 50, 150, 200${\mu}m$ in mean diameter were loaded into the origin of the mixing layer. It is shown that the characteristics of flow and growth rate are strongly dependent on the variation of the velocity ratio. It is also shown the relationship between the Stokes number and the particle dispersion. As a result, in the case of St~1 the particle dispersion is faster than the diffustion of the flow field while in the cases of both St<<1 and St>>1 it is shown that the particle dispersion in lower than the diffusion of the flow filed.

Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV (3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구)

  • Lee, Dong-Ryul;Loh, Byoung-Gook;Kwon, Ki-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

Numerical Modeling of Tide and Tidal Current in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae;Jun, Woong-Sik;Jung, Kwang-Young;Eom, Hyun-Min
    • Ocean Science Journal
    • /
    • v.42 no.3
    • /
    • pp.153-163
    • /
    • 2007
  • This study is based on a series of numerical modeling experiments to understand the tidal circulation in the Kangjin Bay (KB). The tidal circulation in the KB is mostly controlled by the inflow from two channels, Noryang and Daebang which introduce the open ocean water into the northern part of the KB with relatively strong tidal current, while in the southern part of the KB, shallowest region of the entire study area, weak tidal current prevails. The model prediction of the sea level agrees with observed records at skill scores exceeding 90 % in terms of the four major tidal constituents (M2, S2, K1, O1). However, the skill scores for the tidal current show relatively lower values of 87, 99, 59, 23 for the semi-major axes of the constituents, respectively. The tidal ellipse parameters in the KB are such that the semi-major axes of the ellipse for M2 range from 1.7 to 38.5 cm/s and those for S2 range from 0.5 to 14.4 cm/s. The orientations of the major-axes show parallel with the local isobath. The eccentricity values at various grid points of ellipses for M2 and S2 are very low with 0.2 and 0.06 on the average, respectively illustrating that the tidal current in the KB is strongly rectilinear. The magnitude of the tidal residual current speed in the KB is on the order of a few cm/s and its distribution pattern is very complex. One of the most prominent features is found to be the counter-clockwise eddy recirculation cell at the mouth of the Daebang Channel.

Seasonal Characteristics of the Near-Surface Circulation in the Northern South China Sea Obtained from Satellite-Tracked Drifters

  • Park, Gill-Yong;Oh, Im-Sang
    • Ocean Science Journal
    • /
    • v.42 no.2
    • /
    • pp.89-102
    • /
    • 2007
  • The surface circulation of northern South China Sea (hereafter SCS) for the period 1987-2005 was studied using the data of more than 500 satellite-tracked drifters and wind data from QuikSCAT. The mean flow directions in the northern SCS except the Luzon Strait (here after LS) during the periods October_March was southwestward, and $April{\sim}September$ northeastward. A strong northwestward intrusion of the Kuroshio through the LS appears during the $October{\sim}March$ period of northeasterly wind, but the intrusion became weak between April and September. When the strong intrusion occurred, the eddy kinetic energy (EKE) in the LS was $388cm^2/s^2$ which was almost 2 times higher than that during the weak-intrusion season. The volume transport of the Kuroshio in the east of the Philippines shows an inverse relationship to that of the LS. There is a six-month phase shift between the two seasonal phenomena. The volume transport in the east of the Philippines shows its peak sis-month earlier faster than that of the LS. The strong Kuroshio intrusion is found to be also related to the seasonal variation of the wind stress curl generated by the north easterly wind. The negative wind stress curl in the northern part of LS induces an anticyclonic flow, while the positive wind stress curl in the southern part of LS induces a cyclonic flow. The northwestward Kuroshio intrusion in the northern part of LS happened with larger negative wind stress curl, while the westward intrusion along $20.5^{\circ}N$ in the center of the LS occurred with weaker negative wind stress curl.

Oceanographic Condition and Fishing Condition of the Set Net Fishing Ground in Yeosu Bay (여수연해 정치망어장의 해황과 어황에 관한 연구)

  • Kim, Dong-Soo;Lee, Cho-Chool;Park, Yong-Seak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.150-157
    • /
    • 1988
  • The oceanographic condition around the set net fishing ground in Yeosu Bay was investigated by the oceanographic observation in June, July and August, 1988. Also the catch of the set net was analized by daly catch data of the three set net fishing ground from April to September, 1988. The results obtained are as follows: 1) The coastal surface water is high temperature and low salinity through the influence of land, and the off shore water and bottom water are low temperature and high salinity. 2) The eddy current and the sharp thermocline in June appeared in August at the set net fishing ground, and a good catch appeared in June and August. 3) The surface temperature and salinity at the set net fishing ground are 11$^{\circ}C$ to 27$^{\circ}C$ and 31.60$\textperthousand$ to 34.80$\textperthousand$. The surface temperature and salinity of a maximum good catch are 21$^{\circ}C$ and 33.80$\textperthousand$ to 33.99$\textperthousand$ respectively. 4) The dominant species of fish were spanish mackerel, scad, anchovy, sardine, common mackerel, hairtail, crab, yellow tail, in order of catch.

  • PDF