• Title/Summary/Keyword: Ecotoxicity evaluation

Search Result 44, Processing Time 0.025 seconds

Evaluation of Effluent Toxicity which were Exempted from Applying of Ecotoxicity Criteria (생태독성기준 미적용 업종 사업장 배출수 생태독성 수준 평가)

  • Kim, Jongmin;Shin, Kisik;Lee, Soohyung;Lee, Jungseo;Lee, Taekjune
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.197-202
    • /
    • 2017
  • This paper aimed to evaluate the test results of acute toxicity on effluent samples which were exempted from applying of ecotoxicity criteria. Total 316 effluent samples which were free from controlling of ecotoxicity regulation, were tested. Ratio of effluent samples which were exceeded the ecotoxicity criteria (TU > 1) indicated 23.7%. This ratio was a little bit higher than previous study (22.7%) on effluent samples which were controlled under ecotoxicity criteria. These results mean that our ecotoxicity management system is not appropriate and applying of ecotoxicity criteria to all effluent samples (82 industry categories) were needed in order to improve our ecotoxicity system. In addition, the same numeric criteria (TU 1 or 2) for all industry categories were proposed in consideration of these results. Ratio of effluent samples which exceeded the ecotoxicity criteria (TU > 1) with D. magna indicated 23.7%. However V. fischeri showed 14.6%. As a acute toxicity test organism, D. magna seemed to be more sensitive than V. fischeri. Ratio of samples which were exceeded TU 1 with D. magna by 24 h exposure period test indicated 35 %, whereas 48 h showed 41%.

Toxicity Assessment of Heavy Metals in Shihwa Lake and Its Tributaries using the Algae (조류를 이용한 시화호 및 시화호 유입수 내 중금속 물질의 독성 평가 연구)

  • Woo, Minhui;Lee, Gyuyoung;Kim, Jihye;Lim, Jihyun;Lee, Yong-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • This research investigates how using algae as an ecotoxicological test species is easier than using daphnia for identifying toxic causative substances. From the results of the ecotoxicity measurements on the Shihwa lake and its tributaries, heavy metals were considered as one of major factors in causing toxicity. The algae ecotoxicity value was 9.6 while the daphnia ecotoxicity value was 0.8 in the Jeongwang stream. By using algae as the test species, we could identify the toxicity that causes heavy metals which might otherwise have been missed with only daphnia. The results from the EDTA addition test showed that zinc and copper were the main toxic causative substances in the Jeongwang stream and Gunja stream.

Comparison between Ecotoxicity using Daphnia magna and Physiochemical Analyses of Industrial Effluent (산업폐수에 대한 이화학적 분석과 물벼룩 생태독성의 비교)

  • Lee, Sun Hee;Lee, Hak Sung
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1269-1275
    • /
    • 2014
  • Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (${\Sigma}TU$) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ${\leq}$ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.

Evaluation of Ecotoxicity and Characteristics on Indirect Effluents and Related Wastewater (간접방류사업장 관련 폐수의 생태독성수준 및 특성 평가)

  • Kim, Jongmin;Shin, Kisik;Lee, Soohyung;Lee, Jungseo;Lee, Taekjune
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.481-486
    • /
    • 2017
  • This paper aims to evaluate the characteristics of direct and indirect effluents'toxicity level and difference between two test durations (24 h and 48 h) of test method. The proportion of the indirect effluent samples which exceeded the ecotoxicity permit limitations (TU 1 or TU 2) showed more than 2 times higher than that of direct effluent samples. However, effluent toxicity of Wastewater Treatment Plants (WTPs) indicated less than TU 1 regardless of influent toxicity. From this results, treatment process was thought to have a good efficiency. WTP Salinity was very similar between influent and effluent. This trend could be reconfirmed by the component ratio of ion concentration between them and $Na^+$, $SO_4^{2-}$, $C^-$ lions which have a greater percentage than other ions. In addition, in case of high salinity, toxicity value also showed high level. To judge from above results, indirect effluents which were exempted from application of ecotoxicity standards, may need a new effluent limitations regardless of the treatment efficiency of WTP. According to circumstances, effective countermeasure may need to restrain the discharge of salinity-contained effluents which came from indirect-effluent factories. Test duration comparative study indicated that 48 h results were higher toxicity (exceeding rate of ecotoxicity criteria) than 24 h by the 5 to 5.4 percentage. 24 h test duration seemed to be useful in case of rapid detection, whereas 48 h test method could be applied for reinforcement of ecotoxicity regulatory system.

Basic Performance Evaluation of the Ecotoxicity Detection Device for Heavy Metals (중금속류 생태독성 검출장치의 기초성능 평가)

  • Kim, IlHo;Kim, Ji-Sung;Yoon, Young-Han;Ban, Hyo-Jin;Kim, Seok-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.828-834
    • /
    • 2012
  • The ecotoxicity detection device for preliminary test (Test jig) was manufactured to develop the biological early warning system using Vibrio fischeri. In this study, the ecotoxicity detection charateristics of the Test jig was investigated for 6 heavy metals (Cr, Zn, Pb, Cd, Cu and Hg). It was observed that relative luminescence unit (RLU) of Vibrio fischeri constantly decreased by the concentrations of the tested heavy metals. In contrast with other heavy metals, RLUs of Pb and Hg constantly decreased even at low concentrations. RLU of Hg drastically decreased when its concentration increased from 0.13 mg/L to 0.25 mg/L. $EC_{50}$ values of Cr, Zn, Pb and Cd gradually decreased with exposure time, whereas there was no significant change in $EC_{50}$ values of Cu and Hg with time. On the other hand, $EC_{50}$ values between the Test jig and Reference device were compared to evaluate the ecotoxicity detection performance of the Test jig. No big difference was found in $EC_{50}$ vlaues between the two devices, indicating that the Test jig could be applied as the ecotoxicity detection device for heavy metals.

Toxicity Assessment and Evaluation of the Applicability of a Constructed Wetland of Bio-reeds and Bio-ceramics (바이오갈대와 바이오여재를 적용한 인공습지의 효율성 및 독성평가)

  • Park, Da Kyung;Chang, Soon-Woong;Choi, Hanna
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.654-661
    • /
    • 2017
  • Recently, a low-impact development (LID) technic such as a wetland has been proposed as a Nature-friendly process for reducing pollutants caused by livestock wastewater. Therefore, the Daphnia magna toxicity was analyzed for livestock wastewater samples, to determine if a wetland system would also be effective in reducing this ecotoxicity. In the present study, acute D. magna toxicity was not significantly dependent on the presence and type of reed, nor type of media. However, when treated with construction wetlands, ecotoxicities decreased as well as TN, TP and COD concentrations. Therefore, it is considered that a construction wetland system with bio reeds and bio-media as well as general reeds would be effective to reduce the ecotoxicity of livestock wastewater. To apply a wetland system as the subsequent treatment process to a livestock waste water treatment facility, it is necessary to perform an integrated evaluation such as treatment efficiency and the ecotoxicity test for various characteristics of livestock wastewater.

Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • Algae are sensitive to a wide range of pollutants, and are effective bioindicators in ecotoxicity assessments. Here, we evaluated the sub-lethal sensitivity of the marine dinoflagellate Cochlodinium polykrikoides upon exposure to copper (Cu), lead (Pb), bisphenol A (BPA), and Aroclor 1016 (polychlorinated biphenyl, PCB). Toxic effects were assessed by observations of the reduction in cell counts and chlorophyll a levels after exposure to each toxicant. C. polykrikoides displayed dose-dependent, sigmoidal responses when exposed to the tested chemicals. $EC_{50}$-72 h values for Cu, Pb, BPA, and PCB were 12.74, 46.70, 68.15, and $1.07mg\;L^{-1}$, respectively. PCB, which is an endocrine-disrupting chemical, was the most sensitive, proving its toxic effect on the dinoflagellate. This study provides baseline data on the toxic effects of commonly used heavy metals and endocrine-disrupting chemicals to a marine dinoflagellate.

Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna

  • Park, Sun-Young;Choi, Jin-Hee
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • Genotoxic- and ecotoxic assessments of silver nanoparticles (AgNPs) were conducted on the freshwater crustacean Daphnia magna. AgNPs may have genotoxic effects on D. magna, given that the DNA strand breaks increased when exposed to this nanoparticle. Increased mortality was concomitantly observed with DNA damage in the AgNPs-exposed D. magna, which suggests AgNPs-induced DNA damage might provoke higher-level consequences. The results of the comparative toxicities of AgNPs and Ag ions suggest that AgNPs are slightly more toxic than Ag ions. Overall, these results suggest that AgNPs may be genotoxic toward D. magna, which may contribute to the knowledge relating to the aquatic toxicity of AgNPs on aquatic ecosystems, for which little data are available.

Studies on Toxicological Evaluation of Freshwater Sediment using a PLHC-1 Cell Comet Assay (PLHC-1세포주의 Comet assay를 이용한 하천 퇴적토의 생태독성평가)

  • Bak, Jeong-Ah;Hwang, In-Young;Baek, Seung-Hong;Kim, Young-Sug
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, the Comet assay (evaluation of DNA damage) used the fish hepatocellular carinoma cell, PLHC-1, was tried to the sediment extract obtained from freshwater to understand its applicability as a tool for monitoring sediment toxicity. In parallel, induced EROD (7-ethoxyresorufin- O-deethylase) activity and DNA damage (TEM values) in PLHC-1 cells were measured for establishing the tandem endpoints of the PLHC-1cell test to test the ecotoxicity of sediment. Among several study sites in a small river passed through downtown and industrial park area, one of them, site B, showed a higher level of EROD activity and DNA damage than other sites. It indicates that a tandem endpoints of PLHC-1 cells could be useful tools for assessing the toxicity of sediment. The sensitivity of Comet assay with PLHC-1 cells was a little higher than that with a blood cell of frog tadpoles to the solvent extract of sediment. According to the results, a PLHC-1 cell-Comet assay could be used as a useful tool for evaluating ecotoxicity of the freshwater sediment. In addition, more detailed studies are needed to the contaminated site.