• 제목/요약/키워드: Ecosystem metabolism

검색결과 37건 처리시간 0.02초

Contamination of Sediments and Histological Alterations in Barfin Plaice Pleuronectes pinnifasciatus from Amursky Bay(Peter the Great Bay, East Sea/Sea of Japan)

  • Vaschenko Marina A.;Syasina Iraida G.;Durkina Valentina B.;Zhadan Petr M.
    • Ocean and Polar Research
    • /
    • 제25권1호
    • /
    • pp.31-40
    • /
    • 2003
  • In August-September 2001, 15 samples of bottom sediments were collected in the inner, middle and open parts of Amursky Bay near Vladivostok, Russia, and barfin plaice Pleuronectes pinnifasciatus was sampled from the inner and the middle locations of the bay. In the sediments from all three sites elevated concentrations of several heavy metals, i.e. Zn ($102-115{\mu}/g$ dry weight), Ni $(70-73{\mu}g/g)$ and Cu $(27-35{\mu}g/g)$ were discovered. The contents of oil hydrocarbons were very close to or slightly higher than the maximal normal environmental background level, $100{\mu}g/g$ dry weight. The sediments contained negligible amounts of hexachlorocyclohexane, while DDT concentrations were quite high (1.7-16.3ng/g dry weight). Generally, there were no substantial differences in the pollution levels of the locations studied and our results resembled those reported for Amursky Bay in the 1990s. Surprisingly, in 2001 'fiesh' DDT comprised 70-85% of the total DDT content in sediment from all the locations studied. In fish liver total DDTs concentrations were 212.8 and 122.54 ng/g wet weight for the inner and the middle locations, respectively, and 'fresh' DDT comprised 35 and 64% of DDTs, respectively. These results provide evidence of recent input of DDT from an unknown source into the ecosystem of Amursky Bay. Histopathological changes revealed in the plaice liver (vacuolization of hepatocytes, coagulative necrosis of hepatocytes, inflammatory reaction, and necrosis of epithelial cells of bile ducts) are probably connected with an intensive metabolism of DDT in the fish organism. No histological and histomorphometric differences were found in the state of the interrenal tissue. Similar condition of the liver and the interrenal tissue in barfin plaice sampled from the inner and the middle locations of Amursky Bay may be explained by the absence of great differences in the pollution levels of these sites.

자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포 (Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area)

  • 홍제우;홍진규;이성은;이재원
    • 대기
    • /
    • 제23권4호
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.

The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry

  • Hong, Hyun-Hee;Lee, Hyun-Gwan;Jo, Jihoon;Kim, Hye Mi;Kim, Su-Man;Park, Jae Yeon;Jeon, Chang Bum;Kang, Hyung-Sik;Park, Myung Gil;Park, Chungoo;Kim, Kwang Young
    • ALGAE
    • /
    • 제31권4호
    • /
    • pp.373-378
    • /
    • 2016
  • Cochlodinium polykrikoides is a red-tide forming dinoflagellate that causes significant worldwide impacts on aquaculture industries and the marine ecosystem. There have been extensive studies on managing and preventing C. polykrikoides blooms, but it has been difficult to identify an effective method to control the bloom development. There is also limited genome information on the molecular mechanisms involved in its various ecophysiology and metabolism processes. Thus, comprehensive genome information is required to better understand harmful algal blooms caused by C. polykrikoides. We estimated the C. polykrikoides genome size using flow cytometry, with detection of the fluorescence of DNA stained with propidium iodide (PI). The nuclear genome size of C. polykrikoides was 100.97 Gb, as calculated by comparing its mean fluorescence intensity (MFI) to the MFI of Mus musculus, which is 2.8 Gb. The exceptionally large genome size of C. polykrikoides might indicate its complex physiological and metabolic characteristics. Our optimized protocol for estimating the nuclear genome size of a dinoflagellate using flow cytometry with PI can be applied in studies of other marine organisms.

적조와편모조 Scrippsiella trochoidea와 해양세균 Pseudomonas spp.의 동시배양 시 지반산 조성의 변화 (Changes of Fatty Acid composition During Dispecific culture of Scrippsiella trochoidea a Dinoflagellate and Pseudomonas spp. marine Bacteria)

  • 임월애;김학균
    • 한국해양학회지
    • /
    • 제28권3호
    • /
    • pp.186-191
    • /
    • 1993
  • 우리 나라 남해 연안수역 특히 마산만에서 초봄인 3~4월에 와편모조류로서는 가장 빨리 적조를 일으키는 종인 Xcrippsiella trochoidea와 해양생태계에서 분해와 물 질순환에 중요한 역할을 하고 있는 해양세균과의 상호관계를 규명하기 위해서 마산만의 저니에서 분리한 X. trochidea의 cyst를 발아시켜 배양하고 배양액에서 공존하는 세균을 분리하였다. 분리된 세균 중 우점종인 Pseudomonas spp.를 S. trochoide과 함께 천연멸균해수에 투여한 후 지방산 조성의 변화를 분석하여 비교하였다. 그 결과 C_{16:1},{\;}C_{16:0}$의 조성이 상대적으로 증가하였다. 특히 S. trochoidea 와 Pseudomonas spp.의 동시 배양이 $C_{20:5}과{\;}C_{18:0}$의 두 지방산은 S. trochoidea 에서는 오히려 증가하였으나 Pseudomonas spp.에서는 오히려 감소되어, 이 두종의 지방산 대사과정이 서로 연관된다고 추정하였다.

  • PDF

항우식작용을 갖는 여러 항균물질의 조합에 따른 분할 저해 농도(FIC ; Fractional inhibitory concentration) 지수에 대한 연구 (A STUDY ON THE FRACTIONAL INHIBITORY CONCENTRATION(FIC) INDEX OF COMBINATIONS OF ANTICARIOGENIC AGENTS)

  • 김영재;김종철;김각균
    • 대한소아치과학회지
    • /
    • 제29권4호
    • /
    • pp.625-631
    • /
    • 2002
  • 임상에서 사용하고 있는 8종의 항우식 작용을 갖는 항균물질의 조합이 대표적 우식유발 세균인 Streptococcus mutans Ingbritt와 Streptococcus sobrinus 6715-7의 성장에 미치는 영향을 조사하고자 세균별로 28개 조합의 각 항균물질에서 최소 저해 농도와 분할 저해 농도 지수를 구하여 여러 기준에 따라 상승작용, 길항작용, 무관함, 부분적 상호작용 등을 각각 평가하였다. 미국 미생물 학회의 지침에 따라 분류하면 약 34%의 조합에서 상승작용이 관찰되었고 Berenbaum의 분류에 따르면 약 82%에서 상승작용을 갖는다고 해석할 수 있었다. 또한 Isenberg가 정의한 부분적 상승작용은 총 조합수의 절반에서 관찰되었다. 분류기준에 따라 다양한 결과를 얻을 수 있었으나 두 가지 항균물질의 조합이 우식유발 세균을 억제하는데 상승작용을 나타내는 경향이 존재함을 관찰할 수 있었고 따라서 우식유발세균을 억제하는데 있어서 항균물질의 단독 사용보다 세균의 생태와 대사의 여러 부분에 영향을 미치는 항균물질의 조합은 유용할 수 있다는 것을 알 수 있었다.

  • PDF

Xylitol이 구강세균의 부착에 미치는 영향에 관한 연구 (EFFECT OF XYLITOL ON BINDING OF ORAL BACTERIA TO SALIVA-COATED SURFACES)

  • 최혜진;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.170-180
    • /
    • 1997
  • Cariogenicity of the bacteria is attributed to their binding capacity to the teeth. Bacterial attachment to oral surfaces is an essential step for colonization and subsequently infection. Therefore, it is conceivable that caries prevention can be achieved fundamentally by inhibition of bacterial attachment. The rationale for caries prevention through the use of sugar substitutes or limited use of sugar has been revealed. Among many sugar substitutes, xylitol has been shown to exhibit the most profound cariostatic effect, inhibiting glucose metabolism and possibly binding of mutans streptococci. The purpose of this study was to examine the effect of xylitol on binding of different species of oral bacteria. The effect of xylitol on binding of [$^3H$]-labeled oral bacteria to hydroxyapatite coated with human saliva(SHA) as a model for the pellicle-coated tooth surfaces was investigated. The strains of oral bacteria used in this study were A. viscosus T14V, A. viscosus WVU627, P. gingivaiis 2561, P. gingivalis A7Al-28, S. gordonii G9B, S. gordonii Challis, S. sobrinus 6715, S. mutans UA101, S. mutans KPSK -2, S. mutans T8, and S. mutans UA130. The obtained results were as follows: 1. P. gingivalis A7 Al-28, S. mutans UA130, S. mutans T8 grown with xylitol showed greater binding to SHA than the organism grown without xylitol. Among these, S. mutans T8 showed the greatest rate of increase in its binding to SHA ; 8-fold increase in its binding with xylitol. 2. S. mutans KPSK -2 grown with xylitol showed 2 times lesser binding to SHA than the organism grown without xylitol. 3. Binding ability of the remaining strains grown with xylitol to SHA was almost same as that of the organisms grown without xylitol. The overall results suggest that use of xylitol in the oral cavity may affect the complex oral bacterial ecosystem.

  • PDF

유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성 (Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish)

  • 김정곤;박예나;김우근;김지원;이성규;최경호
    • 한국환경보건학회지
    • /
    • 제36권5호
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

A report of 20 unrecorded bacterial species isolated from the coastal area of Korean islands in 2022

  • Hyerim Cho;Yeonjung Lim;Sumin Kim;Hyunyoung Jo;Mirae Kim;Jang-Cheon Cho
    • Journal of Species Research
    • /
    • 제12권2호
    • /
    • pp.165-173
    • /
    • 2023
  • Bacterial communities inhabiting islands play a vital role in the functioning and formation of a unique, isolated ecosystem. Nevertheless, there has been a lack of systematic research on the indigenous microbiological resources of the islands in Korea. To excavate microbial resources for further studies on the metabolism and biotechnological potential, a standard dilution plating was applied to coastal seawater samples collected from islands along the west coast of the Korean Peninsula, including Deokjeokdo, Baengnyeongdo, and Daebudo in 2022. A total of 2,007 bacterial strains were isolated from the samples as single colonies and identified using 16S rRNA gene sequence analyses. A total of 20 strains, with ≥98.7% 16S rRNA gene sequence similarity to bacterial species having validly published names but not reported in Korea, were designated as unrecorded bacterial species in Korea. The unrecorded bacterial strains were phylogenetically diverse and belonged to four phyla, five classes, 12 orders, 17 families, and 18 genera. The unreported species were assigned to Algimonas, Amylibacter, Notoacmeibacter, Roseibium, and Terasakiella of the class Alphaproteobacteria; Alteromonas, Congregibacter, Marinagarivorans, Marinicella, Oceanospirillum, Psychromonas, Thalassotalea, Umboniibacter, and Vibrio of the class Gammaproteobacteria; Lutibacter and Owenweeksia of the class Flavobacteriia; Paenibacillus of the class Bacilli; and Pelagicoccus of the class Opitutae. The taxonomic characteristics of the unreported species, including morphology, biochemistry, and phylogenetic position are provided in detail.

말쥐치, Thamnaconus modestus의 산소소비율과 수온의 관계 (Relationship between Water Temperature and Oxygen Consumption Rate of the Black Scraper Thamnaconus modestus)

  • 이정아;이재성;김지혜;명정구;오승용;강래선
    • Ocean and Polar Research
    • /
    • 제36권1호
    • /
    • pp.39-47
    • /
    • 2014
  • 말쥐치, Thamnaconus modestus는 우리 연근해에서 1970년대 말부터 1980년대에 걸쳐 대표적인 어획종이였으나 지속적인 남획으로 인해 현재 자원이 급격히 감소한 상황이다. 2000년대에 들어오면서 인공종묘생산이 성공하게 되고 현재에는 새로운 양식 대상어종으로서 그 가능성을 타진하고 있다. 이 연구에서는 성체에 진입하는 단계에 있는 말쥐치(전장 $22.6{\pm}0.8$ cm, 총습중 $140.3{\pm}13.9$ g)의 수온($12{\sim}28^{\circ}C$)에 대한 표준대사율을 측정하여 이들 종이 가지는 수온 특성을 파악하고자 하였으며, 각 측정치로부터 그 관련 식을 얻었다. 표준대사율은 수온 $23{\sim}26^{\circ}C$ 부근에서는 수온 상승에 대해 증가 경향이 나타나지 않았으나, $12{\sim}28^{\circ}C$의 수온 범위 전반에서 단위 체중 당 산소소 비율(SOCR, $m/O_2/gWW/h$)의 경우, SOCR = 0.0117WT-0.0135 ($r^2$ = 0.9351), 개체 당 산소소비율(IOCR, $m/O_2/fish/h$)의 경우는, IOCR = 1.8160WT-5.4007 ($r^2$= 0.9428)로 수온 상승에 따라 직선함수로 증가하는 경향을 나타내었다. 그리고 단위 체중 당 산소소비율을 통해 수온민감도($Q_{10}$)를 계산하여 비교한 결과, 수온이 높을수록 낮아지는 경향을 보였는데 외온성 동물의 일반적인 $Q_{10}$ 값인 2~3보다 $12{\sim}15^{\circ}C$에서는 $Q_{10}$ 값이 6.27로 매우 높았고 $23{\sim}28^{\circ}C$에서 $Q_{10}$ 값은 1.30으로 다소 낮아서 난류성 어종의 수온 특성을 보였으며, 이로부터 성체에 진입하는 말쥐치에 있어서 $15{\sim}28^{\circ}C$는 그 적수온대에 속하는 것으로 판단된다.