• Title/Summary/Keyword: Ecophysiology

Search Result 26, Processing Time 0.019 seconds

Effects of Long-Term Application of Rice Compost on Rice Yields and Macronutrients in Paddy Soil

  • Park Chang-Young;Jeon Weon-Tae;Park Ki-Do;Kang Ui-Gum;Lee Jae-Seng;Cho Young-Son;Park Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • A long-term experiment was carried out to examine the effects of compost on the long-term trends and synergy effects with chemical fertilizer and saving the chemical fertilizers of paddy cropping. The experiment was conducted for the past 36 years with constant amounts of N, P, K and compost in a paddy field at Milyang, South Korea. Grain yield was significantly increased in the plots with compost application. Twenty five years after the compost treatment, grain yield was significantly increased and it reached almost 90% of NPK plots. The effect of rice straw compost on grain yield was not clear during the early cropping years about 60%, but it slightly increased there after about 95% during the late five years. In compost plots, soil organic matter content, K and $SiO_2$ was greater in the compost applied plots than with application of recommended doses of NPK. However, soil pH was reduced in compost applied plots and Ca, and Mg were remained unchanged when compared to the application of recommended doses NPK. Soil nutrient contents were less in compost applied plots than with the application of recommended doses of NPK along with compost but was found to be increased than that of un-fertilized plots. The present study indicated that the application of rice straw compost with NPK is the best of all and followed by NPK and Compost. However, treatment of Compost is time consuming and hard working desired and eventually non economical practice in mechanized agricultural systems, even though Compost is very useful source of improving the soil fertility and its physical characteristics and also the application of inorganic N and P are essential for sustaining high yield.

Dietary Nigella sativa and Peganum harmala Oils Reverses Hyperglycaemia, Hepatotoxicity, and Metabolism in Rats

  • Hamden, Khaled;Carreau, Serge;Jamoussi, Kamel;Ayadi, Fatma;Garmazi, Fadhel;Elfeki, Abdelfattah
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.739-744
    • /
    • 2009
  • This study aims to evaluate the therapeutic action of administration of Nigella sativa (NS) and Peganum harmala (PH) oils in diabetes and hepatic toxicity. Results show that treatment of diabetic rats with NS oil or PH oil ameliorate hyperglycaemia induced stress oxidative and hepatic dysfunction in diabetic rats. Administration of NS or PH oil to diabetic rats caused an anti-diabetic and antioxidant activities by the decrease in plasmatic glucose level and increase in hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities, reduced glutathione (GSH) and glycogen contents compared to untreated diabetic rats. Besides, NS and PH oils protect the hepatic function observed by decrease of triglyceride (TG), total cholesterol (TCh), and increase of high density lipoprotein-cholesterol (HDL-Ch) levels in serum and hepatic tissues. Moreover, a diminution in the bilirubin, transaminase glutanic pyruvic (TGP), and transaminase pyruvic oxaloacetic (TPO) contents in serum and the thiobarbituric acid-reactive substances levels (TBARs) in hepatic tissues are also detected.

Modulatory Role of Selenium and Vitamin E, Natural Antioxidants, against Bisphenol A-Induced Oxidative Stress in Wistar Albinos Rats

  • Amraoui, Wahiba;Adjabi, Nesrine;Bououza, Fatiha;Boumendjel, Mahieddine;Taibi, Faiza;Boumendjel, Amel;Abdennour, Cherif;Messarah, Mahfoud
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.231-239
    • /
    • 2018
  • Bisphenol A, an everywhere chemical, is applied as a plasticizer in polycarbonate plastics, which often used in our everyday products and in epoxy resins as protective coatings and linings for food and beverage cans for decades. Human exposure to BPA may lead to adverse effects by interfering with oestrogen receptors. Our present study was conducted to investigate the protective effects of selenium (Se) and vitamin E (Vit E) on BPA-induced damage in the liver of male rats. Animals were randomly divided into four groups: the first group received olive oil and served as control. The second group received both (Se + Vit E) (0.5 mg/kg diet; 100 mg/kg of diet). The third one treated orally by (10 mg/kg b.w.) of BPA. The last group received (Se + Vit E) (0.5 mg/kg diet; 100 mg/kg of diet) concomitantly with (10 mg/kg b.w.) BPA. Exposure to BPA for three weeks engendered a hepatic disorder. An increased AST and ALT enzymatic activity was noticed in BPA-treated group as compared to other groups. Furthermore, a change in glucose, cholesterol, LDL-C, HDL-C, albumin, and bilirubin level was remarkable. Moreover, exposure to BPA increased malondialdehyde levels while reduced gluthatione content was decreased in the liver homogenate. A decrease in glutathione peroxidase, glutathione s-transferase and catalase activities was observed in the same group. Administration of selenium and vitamin E through the diet in BPA treated rats ameliorated the biochemical parameters cited above. In addition, an improvement in activities of liver enzymes was recorded. The histological findings confirmed the biochemical results. The model of this study that we employed characterized the relationships between BPA-induced hepatotoxicity and its alleviation by natural antioxidants like selenium and vitamin E.

Ecophysiology of Photosynthesis 2: Adaptation of the Photosynthetic Apparatus to Changing Environment (광합성의 생리생태(2) - 환경변화에 대한 광합성의 적응반응 -)

  • 김판기;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.171-176
    • /
    • 2001
  • 25만 여종에 달하는 지구상의 식물은 생물권의 무수한 환경변화 속에서 종을 유지할 수 있도록 다양한 유전적인 진화를 통하여 지구상에 정착하였다. 이들 식물이 생육하고 있는 기상환경은 매우 다양하며, 생장과정에서 수많은 환경변화를 시간적ㆍ공간적으로 경험하게 된다. 생육 환경이 변화하면 식물의 형능적, 생리적, 생합성적 특성이 변화하는 반응이 나타난다. (중략)

  • PDF

Ecophysiology of Photosynthesis 1: Effects of Light Intensity and Intercellular $CO_2$ Pressure on Photosynthesis (광합성의 생리생태(1) - 광도와 엽육내 $CO_2$분압 변화에 대한 광합성 반응 -)

  • 김판기;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.126-133
    • /
    • 2001
  • 녹색식물과 같이 독립영양생물이 빛에너지를 이용하여 $CO_2$와 물로 탄수화물을 만드는 일련의 반응을 광합성이라 한다. 그 일련의 반응 중에서(그림 1) 반응 I과 II는 틸라코이드(thylakoid)에서, 반응 III은 스트로마(stroma)에서, 반응 IV는 엽록체내와 세포질에서 일어나는 반응의 상호작용에 의하여 나타난다. 과거에는 반응 I과 II를 명반응, 반응 III과 IV를 암반응이라 부르기도 하였다.(중략)

  • PDF

Ecophysiology of Photosynthesis 3: Photosynthetic responses to elevated atmospheric $CO_2$ concentration and temperature (광합성의 생리생태 (3) - $CO_2$ 농도와 온도 상승에 대한 광합성 반응 -)

  • 김판기;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.238-243
    • /
    • 2001
  • 대기중의 $CO_2$ 농도 상승은 지구온난화의 주원인이 되고 있는데, 1960년대 전반에 320$\mu$㏖ㆍ㏖$^{-1}$ 이하 였던 $CO_2$농도가 화석연료의 사용량 증가, 삼림 벌채 등의 영향으로 근년에는 360 $\mu$㏖ㆍ㏖$^{-1}$ 이상으로 상승하였다(Bagastow et al., 1985). 이러한 추세로 대기중의 $CO_2$ 농도가 증가한다면 21세기 말에는 $CO_2$ 농도가 현재의 약 2배로 상승되고, 2~6$^{\circ}C$의 기온 상승이 예측되어 (Burroughs, 2001) 지구차원의 환경문제로 대두되고 있다.(중략)

  • PDF

Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology

  • Lee, Hyang Burm;Patriarca, Andrea;Magan, Naresh
    • Mycobiology
    • /
    • v.43 no.2
    • /
    • pp.93-106
    • /
    • 2015
  • Alternaria species are common saprophytes or pathogens of a wide range of plants pre- and post-harvest. This review considers the relative importance of Alternaria species, their ecology, competitiveness, production of mycotoxins and the prevalence of the predominant mycotoxins in different food products. The available toxicity data on these toxins and the potential future impacts of Alternaria species and their toxicity in food products pre- and post-harvest are discussed. The growth of Alternaria species is influenced by interacting abiotic factors, especially water activity ($a_w$), temperature and pH. The boundary conditions which allow growth and toxin production have been identified in relation to different matrices including cereal grain, sorghum, cottonseed, tomato, and soya beans. The competitiveness of Alternaria species is related to their water stress tolerance, hydrolytic enzyme production and ability to produce mycotoxins. The relationship between A. tenuissima and other phyllosphere fungi has been examined and the relative competitiveness determined using both an Index of Dominance ($I_D$) and the Niche Overlap Index (NOI) based on carbon-utilisation patterns. The toxicology of some of the Alternaria mycotoxins have been studied; however, some data are still lacking. The isolation of Alternaria toxins in different food products including processed products is reviewed. The future implications of Alternaria colonization/infection and the role of their mycotoxins in food production chains pre- and post-harvest are discussed.