DOI QR코드

DOI QR Code

Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology

  • Lee, Hyang Burm (Environmental Microbiology Lab., Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Patriarca, Andrea (Departamento de Quimica Organica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria) ;
  • Magan, Naresh (Applied Mycology Group, AgriFood Theme, Cranfield University)
  • Received : 2015.02.26
  • Accepted : 2015.04.29
  • Published : 2015.06.30

Abstract

Alternaria species are common saprophytes or pathogens of a wide range of plants pre- and post-harvest. This review considers the relative importance of Alternaria species, their ecology, competitiveness, production of mycotoxins and the prevalence of the predominant mycotoxins in different food products. The available toxicity data on these toxins and the potential future impacts of Alternaria species and their toxicity in food products pre- and post-harvest are discussed. The growth of Alternaria species is influenced by interacting abiotic factors, especially water activity ($a_w$), temperature and pH. The boundary conditions which allow growth and toxin production have been identified in relation to different matrices including cereal grain, sorghum, cottonseed, tomato, and soya beans. The competitiveness of Alternaria species is related to their water stress tolerance, hydrolytic enzyme production and ability to produce mycotoxins. The relationship between A. tenuissima and other phyllosphere fungi has been examined and the relative competitiveness determined using both an Index of Dominance ($I_D$) and the Niche Overlap Index (NOI) based on carbon-utilisation patterns. The toxicology of some of the Alternaria mycotoxins have been studied; however, some data are still lacking. The isolation of Alternaria toxins in different food products including processed products is reviewed. The future implications of Alternaria colonization/infection and the role of their mycotoxins in food production chains pre- and post-harvest are discussed.

Keywords

References

  1. Robiglio AL, Lopez SE. Mycotoxin production by Alternaria alternata strains isolated from red delicious apples in Argentina. Int J Food Microbiol 1995;24:413-7. https://doi.org/10.1016/0168-1605(94)00035-5
  2. Solfrizzo M, Girolamo AD, Vitti C, Tylkowska K, Grabarkiewicz-Szczesna J, Szopinka D, Dorna H. Toxigenic profile of Alternaria alternata and Alternaria radicina occurring on umbelliferous plants. Food Addit Contam 2005;22:302-8. https://doi.org/10.1080/02652030500058379
  3. Culshaw F, Cook, RJ, Magan N, Evans EJ. Blackpoint of wheat. London: Home Grown Cereals Authority; 1988.
  4. Magan N, Lacey J. Effect of water activity, temperature and substrate on interactions between field and storage fungi. Trans Br Mycol Soc 1984;82:83-93. https://doi.org/10.1016/S0007-1536(84)80214-4
  5. Li F, Yoshizawa T. Alternaria mycotoxins in weathered wheat from China. J Agric Food Chem 2000;48:2920-4. https://doi.org/10.1021/jf0000171
  6. Patriarca A, Azcarate MP, Terminiello L, Fernandez Pinto V. Mycotoxin production by Alternaria strains isolated from Argentinean wheat. Int J Food Microbiol 2007;119:219-22. https://doi.org/10.1016/j.ijfoodmicro.2007.07.055
  7. Andersen B, Thrane U, Svendsen A, Rasmussen IA. Associated field mycobiota on malt barley. Can J Bot 1996;74:854-8. https://doi.org/10.1139/b96-106
  8. Kosiak B, Torp M, Skjerve E, Andersen B. Alternaria and Fusarium in Norwegian grains of reduced quality: a matched pair sample study. Int J Food Microbiol 2004;93:51-62. https://doi.org/10.1016/j.ijfoodmicro.2003.10.006
  9. Logrieco A, Moretti A, Solfrizzo M. Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2009;2:129-40. https://doi.org/10.3920/WMJ2009.1145
  10. Medina A, Valle-Algarra FM, Mateo R, Gimeno-Adelantado JV, Mateo F, Jimenez M. Survey of the mycobiota of Spanish malting barley and evaluation of the mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Int J Food Microbiol 2006;108:196-203. https://doi.org/10.1016/j.ijfoodmicro.2005.12.003
  11. Webley DJ, Jackson KL, Mullins JD, Hocking AD, Pitt JI. Alternaria toxins in weather-damaged wheat and sorghum in the 1995-1996 Australian harvest. Aust J Agric Res 1997;48: 1249-56. https://doi.org/10.1071/A97005
  12. Woudenberg JH, Groenewald JZ, Binder M, Crous PW. Alternaria redefined. Stud Mycol 2013;75:171-212. https://doi.org/10.3114/sim0015
  13. Azcarate MP, Patriarca A, Terminiello L, Fernandez Pinto V. Alternaria toxins in wheat during the 2004 to 2005 Argentinean harvest. J Food Prot 2008;71:1262-5. https://doi.org/10.4315/0362-028X-71.6.1262
  14. Liu GT, Qian YZ, Zhang P, Dong ZM, Shi ZY, Zhen YZ, Miao J, Xu YM. Relationships between Alternaria alternata and oesophageal cancer. IARC Sci Publ 1991;(105):258-62.
  15. Liu GT, Qian YZ, Zhang P, Dong WH, Qi YM, Guo HT. Etiological role of Alternaria alternata in human oesophageal cancer. Chin Med J (Engl) 1992;105:394-400.
  16. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J 2011;9:2407. https://doi.org/10.2903/j.efsa.2011.2407
  17. Lopez P, Venema DP, de Rijk TC, de Kok A, Scholten J, Mol JG, de Nijs WC. Occurrence of Alternaria mycotoxins in food products in the Netherlands. In: World Mycotoxin Forum; 2014 Nov 10-12; Vienna, Austria.
  18. Magan N, Aldred D. Why do fungi produce mycotoxins? In: Dijksterhuis J, Samson RA, editors. Food mycology: a multifaceted approach to fungi and food. Boca Raton: Taylor and Francis; 2007. p. 121-33.
  19. Patriarca A, Medina A, Fernandez Pinto V, Magan N. Temperature and water stress impacts on growth and production of altertoxin-II by strains of Alternaria tenuissima from Argentinean wheat. World Mycotoxin J 2014;7:329-34. https://doi.org/10.3920/WMJ2013.1711
  20. Oviedo MS, Ramirez ML, Barros GG, Chulze SN. Effect of environmental factors on tenuazonic acid production by Alternaria alternata on soybean-based media. J Appl Microbiol 2009;107:1186-92. https://doi.org/10.1111/j.1365-2672.2009.04301.x
  21. Pose G, Patriarca A, Kyanko V, Pardo A, Fernandez Pinto V. Effect of water activity and temperature on growth of Alternaria alternata on a synthetic tomato medium. Int J Food Microbiol 2009;135:60-3. https://doi.org/10.1016/j.ijfoodmicro.2009.07.018
  22. Vaquera S, Patriarca A, Fernandez Pinto V. Water activity and temperature effects on growth of Alternaria arborescens on tomato medium. Int J Food Microbiol 2014;185:136-9. https://doi.org/10.1016/j.ijfoodmicro.2014.06.007
  23. Magan N, Lacey J. The phylloplane microflora of ripening wheat and effect of late fungicide applications. Ann Appl Biol 1986;109:117-28. https://doi.org/10.1111/j.1744-7348.1986.tb03190.x
  24. Wallace HA, Sinha RN. Causal factors operative in distributional patterns and abundance of fungi: a multivariate study. In: Wicklow DT, Carroll GC, editors. The fungal community: its organization and role in the ecosystem. New York: Marcel Dekker; 1981. p. 233-47.
  25. Magan N, Aldred D, Hope R, Mitchell D. Environmental factors and interactions with mycobiota of grain and grapes: effects on growth, deoxynivalenol and ochratoxin production by Fusarium culmorum and Aspergillus carbonarius. Toxins 2010;2;353-66. https://doi.org/10.3390/toxins2030353
  26. Hope R. Ecology and control of Fusarium species and mycotoxins in wheat grain [dissertation]. Bedford: Cranfield University; 2004.
  27. Magan N, Aldred D. Chapter 2. Environmental fluxes and fungal interactions: maintaining a competitive edge. In: Avery SV, Stratford M, Van West P, editors. Stress in yeasts and filamentous fungi. Amsterdam: Elsevier Ltd.; 2007. p. 19-36.
  28. Marin S, Sanchis V, Ramos AJ, Vinas I, Magan N. Environmental factors, in vitro interactions, and niche overlap between Fusarium moniliforme, F. proliferatum, and F. graminearum, Aspergillus and Penicillium species from maize grain. Mycol Res 1998;102:831-7. https://doi.org/10.1017/S0953756297005777
  29. Lee HB, Magan N. Environmental factors and nutritional utilization patterns affect niche overlap indices between Aspergillus ochraceus and other spoilage fungi. Lett Appl Microbiol 1999;28:300-4. https://doi.org/10.1046/j.1365-2672.1999.00521.x
  30. Mohale S, Magan N, Medina A. Comparison of growth, nutritional utilisation patterns, and niche overlap indices of toxigenic and atoxigenic Aspergillus flavus strains. Fungal Biol 2013;117:650-9. https://doi.org/10.1016/j.funbio.2013.07.002
  31. Muller ME, Urban K, Koppen R, Siegel D, Korn U, Koch M. Mycotoxins as antagonistic or supporting agents in the interaction between phytopathogenic Fusarium and Alternaria fungi. World Mycotoxin J 2015;8:311-21. https://doi.org/10.3920/WMJ2014.1747
  32. Magan N, Cayley GR, Lacey J. Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Appl Environ Microbiol 1984; 47:1113-7.
  33. Magan N, Lacey J. The effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. In: Lacey J, editor. Trichothecenes and other mycotoxins. Chichester: Wiley & Sons; 1985. p. 243-56.
  34. Sanchis V, Magan N. Environmental profiles for growth and mycotoxin production. Chapter 8. In: Magan N, Olsen M, editors. Mycotoxins in food: detection and control. Cambridge: Woodhead Publishing Ltd.; 2004. p. 174-89.
  35. Oviedo MS, Ramirez ML, Barros GG, Chulze SN. Impact of water activity and temperature on growth and altenariol and altenariol monomethyl ether production of Alternaria alternata isolated from soybean. J Food Prot 2010;73:336-43. https://doi.org/10.4315/0362-028X-73.2.336
  36. Oviedo MS, Ramirez ML, Barros GG, Chulze SN. Influence of water activity and temperature on growth and mycotoxin production by Alternaria alternata on irradiated soya beans. Int J Food Microbiol 2011;149:127-32. https://doi.org/10.1016/j.ijfoodmicro.2011.06.007
  37. Magan N, Baxter ES. Relationship between environmental factors and tenuazonic acid production by Alternaria isolates from sorghum. In: Scudamore KA, editor. Occurrence and significance of mycotoxins. Slough: Central Science Laboratories; 1994. p. 309-13.
  38. Pose G, Patriarca A, Kyanko V, Pardo A, Fernandez Pinto V. Water activity and temperature effects on mycotoxin production by Alternaria alternata on a synthetic tomato medium. Int J Food Microbiol 2010;142:348-53. https://doi.org/10.1016/j.ijfoodmicro.2010.07.017
  39. Ostry V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J 2008;1:175-88. https://doi.org/10.3920/WMJ2008.x013
  40. Scott PM. Other mycotoxins. In: Magan N, Olsen M, editors. Mycotoxins in food: detection and control. Cambridge: Woodhead Publishing Ltd.; 2004. p. 406-40.
  41. Scussel VM, Scholten JM, Rensen PM, Spanjer MC. Multitoxins in cork stoppers and fermented beverages by liquid chromatography-mass spectrometry including Alternaria toxins. In: XIIth International IUPAC Symposium on Mycotoxins and Phycotoxins; 2007 May 21-25; Istanbul, Turkey; poster 1356.
  42. Spanjer MC, Rensen PM, Scholten JM. LC-MS/MS multimethod for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit Contam 2008;25:472-89. https://doi.org/10.1080/02652030701552964
  43. Rasmussen RR, Storm IM, Rasmussen PH, Smedsgaard J, Nielsen KF. Multi-mycotoxin analysis of maize silage by LCMS/ MS. Anal Bioanal Chem 2010;397:765-76. https://doi.org/10.1007/s00216-010-3545-7
  44. Wang S, Cheng L, Ji S, Wang K. Simultaneous determination of seventeen mycotoxins residues in Puerariae lobatae radix by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2014;98:201-9. https://doi.org/10.1016/j.jpba.2014.05.037
  45. Zur G, Hallerman EM, Sharf R, Kashi Y. Development of a polymerase chain reaction-based assay for the detection of Alternaria fungal contamination in food products. J Food Prot 1999;62:1191-7. https://doi.org/10.4315/0362-028X-62.10.1191
  46. Somma S, Pose G, Pardo A, Mule G, Pinto VF, Moretti A, Logriecoa AF. AFLP variability, toxin production, and pathogenicity of Alternaria species from Argentinean tomato fruits and puree. Int J Food Microbiol 2011;145:414-9. https://doi.org/10.1016/j.ijfoodmicro.2011.01.006
  47. Oviedo MS, Sturm ME, Reynoso MM, Chulze SN, Ramirez ML. Toxigenic profile and AFLP variability of Alternaria alternata and Alternaria infectoria occurring in wheat. Braz J Microbiol 2013;44:447-55. https://doi.org/10.1590/S1517-83822013000200017
  48. Crespo-Sempere A, Estiarte N, Marin S, Sanchis V, Ramos AJ. Propidium monoazide combined with real-time quantitative PCR to quantify viable Alternaria spp. contamination in tomato products. Int J Food Microbiol 2013;165:214-20. https://doi.org/10.1016/j.ijfoodmicro.2013.05.017
  49. Abdel-Hadi A, Schmidt-Heydt M, Parra R, Geisen R, Magan N. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. J R Soc Interface 2012;9:757-67. https://doi.org/10.1098/rsif.2011.0482
  50. Medina A, Schmidt-Heydt M, Cardenas-Chavez DL, Parra R, Geisen R, Magan N. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors. J R Soc Interface 2013;10:20130320. https://doi.org/10.1098/rsif.2013.0320
  51. Rivoire B, Attucci S, Anthonioz P, Carre P, Lemarie E, Hazouard E. Occupational acute lung injury due to Alternaria alternata: early stage of organic dust toxic syndrome requires no corticosteroids. Intensive Care Med 2001;27:1236-7. https://doi.org/10.1007/s001340100983
  52. Pero RW, Posner H, Blois M, Harvan D, Spalding JW. Toxicity of metabolites produced by the "Alternaria". Environ Health Perspect 1973;4:87-94. https://doi.org/10.1289/ehp.730487
  53. Haubruge E, Chasseur C, Debouck C, Begaux F, Suetens C, Mathieu F, Michel V, Gaspar C, Rooze M, Hinsenkamp M, et al. The prevalence of mycotoxins in Kashin-Beck disease. Int Orthop 2001;25:159-61. https://doi.org/10.1007/s002640100240
  54. Menzies D, Comtois P, Pasztor J, Nunes F, Hanley JA. Aeroallergens and work-related respiratory symptoms among office workers. J Allergy Clin Immunol 1998;101(1 Pt 1):38-44. https://doi.org/10.1016/S0091-6749(98)70191-5
  55. Licorish K, Novey HS, Kozak P, Fairshter RD, Wilson AF. Role of Alternaria and Penicillium spores in the pathogenesis of asthma. J Allergy Clin Immunol 1985;76:819-25. https://doi.org/10.1016/0091-6749(85)90755-9
  56. Brugger EM, Wagner J, Schumacher DM, Koch K, Podlech J, Metzler M, Lehmann L. Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol Lett 2006; 164:221-30. https://doi.org/10.1016/j.toxlet.2006.01.001
  57. Xu DS, Kong TQ, Ma JQ. The inhibitory effect of extracts from Fructis lycii and Rhiozoma polygonati on in vitro DNA breakage by alternariol. Biomed Environ Sci 1996;9:67-70.
  58. Fehr M, Pahlke G, Fritz J, Christensen MO, Boege F, Altemoller M, Podlech J, Marko D. Alternariol acts as a topoisomerase poison, preferentially affecting the IIalpha isoform. Mol Nutr Food Res 2009;53:441-51. https://doi.org/10.1002/mnfr.200700379
  59. Fleck SC, Burkhardt B, Pfeiffer E, Metzler M. Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol Lett 2012;214:27-32. https://doi.org/10.1016/j.toxlet.2012.08.003
  60. Terminiello L, Patriarca A, Pose G, Fernandez Pinto V. Occurrence of alternariol, alternariol monomethyl ether and tenuazonic acid in Argentinean tomato puree. Mycotoxin Res 2006;22:236-40. https://doi.org/10.1007/BF02946748
  61. Gannibal PB, Orina AS, Mironenko NV, Levitin MM. Differentiation of the closely related species, Alternaria solani and A. tomatophila, by molecular and morphological features and aggressiveness. Eur J Plant Pathol 2014;139:609-23. https://doi.org/10.1007/s10658-014-0417-6
  62. Lee HB, Yu SH. Incidence of Alternaria species in red pepper and sesame from Korea and their ability to produce mycotoxins. Korean J Plant Pathol 1995;11:1-8.
  63. Lee HB, Yu SH. Distribution of mycotoxin-producing isolates in the genus Alternaria. Korean J Plant Pathol 1995;11:151-7.
  64. Greco M, Patriarca A, Terminiello L, Fernandez Pinto V, Pose G. Toxigenic Alternaria species from Argentinean blueberries. Int J Food Microbiol 2012;154:187-91. https://doi.org/10.1016/j.ijfoodmicro.2012.01.004
  65. Benavidez Rozo ME, Patriarca A, Cabrera G, Fernandez Pinto VE. Determination of the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato. Rev Iberoam Micol 2014;31:119-24. https://doi.org/10.1016/j.riam.2013.09.002
  66. Polizzotto R, Andersen B, Martini M, Grisan S, Assante G, Musetti R. A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines. J Microbiol Methods 2012;88:162-71. https://doi.org/10.1016/j.mimet.2011.11.009
  67. Jensen B, Knudsen IM, Andersen B, Nielsen KF, Thrane U, Jensen DF, Larsen J. Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production. Int J Food Microbiol 2013;160:313-22. https://doi.org/10.1016/j.ijfoodmicro.2012.11.005
  68. Lawrence DP, Gannibal PB, Peever TL, Pryor BM. The sections of Alternaria: formalizing species-groups concepts. Mycologia 2013;105:530-46. https://doi.org/10.3852/12-249
  69. Mislivec PB, Bruce VR, Stack ME, Bandler R. Molds and tenuazonic acid in fresh tomatoes used for catsup production. J Food Prot 1987;1:38-41.
  70. Motta SD, Valente Soares LM. Survey of Brazilian tomato products for alternariol, alternariol monomethyl ether, tenuazonic acid and cyclopiazonic acid. Food Addit Contam 2001;18:630-4. https://doi.org/10.1080/02652030117707
  71. Bottalico A, Logrieco A. Alternaria plant diseases in Mediterranean countries and associated mycotoxins. In: Chelkowski J, Visconti A, editors. Alternaria: biology plant diseases and metabolites. Amsterdam: Elsevier; 1992. p. 209-32.
  72. Visconti A, Sibilia A, Sabia C. Alternaria alternata from oilseed rape: mycotoxin production, and toxicity to Artemia salina larvae and rape seedlings. Mycotoxin Res 1992;8:9-16. https://doi.org/10.1007/BF03192209
  73. Andersen B, Nielsen KF, Fernandez Pinto V, Patriarca A. Characterization of Alternaria strains from Argentinean blueberry, tomato, walnut and wheat. Int J Food Microbiol 2015;196:1-10. https://doi.org/10.1016/j.ijfoodmicro.2014.11.029