• 제목/요약/키워드: Ecological traits

검색결과 147건 처리시간 0.028초

Comparison and analysis on sheep meat quality and flavor under pasture-based fattening contrast to intensive pasture-based feeding system

  • Zhang, Zhichao;Wang, Xiaoqi;Jin, Yan;Zhao, Kai;Duan, Ziyuan
    • Animal Bioscience
    • /
    • 제35권7호
    • /
    • pp.1069-1079
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effect of 4-month intensive feeding on the meat quality, fatty acid profile, flavor, and growth performance of grazing Hulunbuir sheep (HBS). Methods: The HBS were selected 4-months after birth in a pasture rearing system as the experimental animals (n = 44, female, average body weight 23.8±2.2 kg) then divided equally into pasture-based grazing fattening (PAS) and concentrate-included intensive fattening (CON) groups for another 4-month finishing. When finished fattening, all animals were slaughtered to collect musculus longissimus dorsi subcutaneous adipose tissue and to investigate the influences on meat quality, fatty acid profile, flavor and growth performance. Results: The results showed lambs in CON group got significantly higher live weight, hot carcass weight, and dressing percentage. The CON group had significantly higher value of redness (a*), lightness (L*) and water holding capacity (p<0.05), significantly lower value of Warner-Bratzler shear force than the PAS group (p<0.05). The subcutaneous fat from CON group lambs demonstrated a significantly higher content of C18:1 and C18:2 (p<0.05), but lower C14:0 and C16:0, indicating an increased degree of unsaturated fatty acid. The content of 4-methyloctanoic acid, 4-ethyloctanoic acid and 4-methylnonanoic acid had increased 2 to 4 times, representing a more intense odor in the CON group. However, the values were still lower than most sheep breeds reported, indicating the indoor feeding system could not fundamentally deteriorate the excellent meat characteristic of HBS. Conclusion: It was evident that lambs in CON group exhibited a better meat production performance, improved in meat color, texture and healthier fatty acid profile through pasture-weaned concentrate included intensive fattening system, which offers a good alternative regimen for lamb finishing and has a wide prospection in the HBS meat industry.

Inheritance of Tolerance of Maize Inbreds to Exserohilum turcicum in North Korea

  • Kim, Soon-Kwon;Lee, Duk-Kyu;Lee, Joon-Ho;Jeong, Jae-Bong;Nwe, Win-Win;Han, Hyoung-Jai;Lee, Kwang-Soo
    • 한국작물학회지
    • /
    • 제58권2호
    • /
    • pp.91-106
    • /
    • 2013
  • Exserohilum turcicum is considered serious destructive disease of maize (Zea mays L.) in North Korea. This study aimed to understand genetic inheritance and combining ability of newly bred lines of maize tolerant to E. turcicum by diallel crosses. Three diallel sets for two different ecological regions and one agronomic trait; eastern (E), northern (N) and stay green (SG) involving 29 inbred lines were tested in eight locations of 2000 and 2001. E. turcicum infections were under natural conditions, respectively. Lines used were selected for high yield potential in test crosses with good agronomic traits and tolerance to biotic and abiotic stresses. Selection for race specific high resistance to biotic stresses was avoided to select quantitatively inherited genes. Host plant responses to E. turcicum were rated on a scale of 1 (highly tolerant) to 9 (highly susceptible). Highly significant variations were recorded in all trials. General combining ability (GCA) mean square was roughly twice that of specific combining ability (SCA). The genotype (G) by environment (E) interaction was highly significant. The overall results of genetic studies in three diallel sets show that genetic control for inbred tolerance to E. turcicum is polygenic and quantitatively inherited. New inbreds; E-3, N-1 and SG-4 confer better tolerance to E. turcicum than the widely used inbreds; Mo17, and B73. Proper use of genetic information from this study shall increase of corn production under high E. turcicum infection in the Far Eastern Regions of Korea and China.

해바라기에 있어서 파종기 이동이 초장, 엽수, 개화기 및 수량에 미치는 영향 (Effects of Different Planting on Plant Height, Number of Leaves, Flowering and Yield on Sunflower (Helianthus annuus. L.))

  • 강광희;이은웅
    • 한국작물학회지
    • /
    • 제22권2호
    • /
    • pp.98-103
    • /
    • 1977
  • 두 품종 군포재래 및 페레도빅에 대하여 파종기에 따른 생태적 차이를 구명함으로서 우리나라 작부방식 및 간ㆍ혼작에 알맞는 해바라기 재배와 품종선택의 기초자료를 얻고져 1974년 수원에서 4월15일부터 7월25일까지 20일 간격으로 6회에 걸쳐 파종하였다. 1) 페레도빅은 파종기가 빨라지면 발뢰기도 빨라졌으나 군포재래는 파종기를 달리 하여도 일정시기(8월8일) 이후에 발뢰기에 도달하였다. 2) 군포재래는 페레도빅에 비하여 감광성정도가 높게 나타났으며 페레도빅은 감온성 정도가 군포재래 보다 높은 경향이다. 3) 발뢰이후 개화기까지 일수는 파종기에 따라 차이가 인정되지 않고 페레도빅은 25일, 군포재래는 28일이 소요되었다. 4) 페레도빅은 발뢰이후생장이 이전의 생장보다 크며 군포재래는 반대로 나타났다. 5) 두 품종 모두 5월25일 파종에서 초장 및 경의 굵기가 모두 컸으며 품종간의 차리도 현저하게 나타났고 파종기가 지연됨에 따라 품종간 차이가 적어졌다. 6) 페레도빅은 군포재래보다 엽수가 적으며 파종기에 따른 차이가 없고, 군포재래는 엽수가 많으며 5월25일 파종까지는 파종기별 차이가 없어도 6월15일 이후는 파종기 지연에 따라 엽수가 현저하게 줄었다. 7) 5월5일 파종기에서 페레도빅을 종실수량 158kg/10a로 가장 높았으며 7월5일 이후의 파종에서는 현저하게 감수되었다. 군포재래는 파종기 지연에 따라 수량감수정도는 페레도빅보다 적었다.

  • PDF

Genetic diversity of Kalopanax pictus populations in Korea based on the nrDNA ITS sequence

  • Sun, Yan-Lin;Lee, Hak-Bong;Kim, Nam-Young;Park, Wan-Geun;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • 제39권1호
    • /
    • pp.75-80
    • /
    • 2012
  • $Kalopanax$ $pictus$ is a long-lived deciduous perennial tree in the family Araliaceae mainly distributed in the East Asia. In Korea, this species is of ecological and medical importance. Because typical populations of this species are small and distributed in patches, $K.$ $pictus$ has been considered as a narrow habitat species. To understand the genetic diversity and population structure of this species, the sequence variation of the nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) region was analyzed among 18 different $K.$ $pictus$ populations in the present investigation. The nrDNA ITS sequences of Korean populations investigated in this study showed identical of 616 bp in length, and no any nucleotide variation was found in the entire nrDNA ITS region sequence. This result suggested that the $K.$ $pictus$ populations in Korea might belong to the same isolate, and no mutation was found in the nrDNA ITS region. Compared with other known ITS sequence sources from $K.$ $pictus$ populations, only four variable nucleotide sites were found within the entire ITS region. Very narrow genetic diversity appearing in the population level of $K.$ $pictus$ makes us hypothesize that their relatively isolated habitats. The long-lived traits might be one main reason. However, another probability was that the nr-DNA ITS region might be noneffective in classifying populations of $K.$ $pictus$. Thus, to further understand the phylogenetic relationship of $K.$ $pictus$ populations, more samplings should be performed based on more DNA sequences.

Effect of plant density ratios and weed control on the performance of maize-bean intercropping

  • Sadeghi, Hossein;Kazemeini, Seyed Abdolreza;Edalat, Mohsen
    • Journal of Ecology and Environment
    • /
    • 제35권4호
    • /
    • pp.313-322
    • /
    • 2012
  • A 2-year study (2010-2011) was carried out in order to evaluate the effects of bean and maize intercropping. The experiment tested five different cropping systems: sole cropping of each crop, as well as intercropping of maize/bean with the ratios of 1:3 ($M_1B_3$), 2:2 ($M_2B_2$) and 3:1 ($M_3B_1$), each of which took place in the presence of two weed management systems (no weed control and weed eradication through manual removal), in a factorial experiment based on randomized complete block design using three replicates. Tests of homogeneity of variance for combined data over two years showed that data of both years could be analyzed together. The results showed that the effect of intercropping treatments on all measured traits in maize and bean were significantly different. A minimum land equivalent ratio (LER) for maize (0.78) was obtained for $M_3B_1$ under conditions of no weed control, while the highest LER (1.03) was observed in $M_3B_1$ under weed-free conditions. The highest (0.99) and lowest (0.70) LER values for beans were recorded for $M_1B_3$ under weed-free conditions and $M_3B_1$ under conditions of no weed control, respectively. $M_1B_3$ under weed-free conditions showed the highest total LER (2.02), while $M_3B_1$ under conditions of no weed control showed the lowest (1.48). Results of this study indicated that intercropping bean and maize can be an effective method to increase total productivity, and that the $M_1B_3$ system was the best cropping system for high productivity.

Interaction between different nitrogen fertilizer levels and maize-bean intercropping patterns

  • Sadeghi, Hossein;Kazemeini, Seyed Abdolreza
    • Journal of Ecology and Environment
    • /
    • 제35권4호
    • /
    • pp.269-277
    • /
    • 2012
  • In order to investigate the effects of different maize-bean intercropping patterns, and of nitrogen fertilizers on morphological and yield related traits, a factorial study based on Randomized Complete Block Design (RCBD) was performed during the 2010 and 2011 growing seasons in a research filed of Shiraz University, Iran. The first factor of the study was seven different ratios of Maize-Bean intercropping system (Maize sole cropping, Bean sole cropping, and intercropping of maize/bean at the ratios of 1/3, 1/1, 2/3, 3/2 and 3/1) and the second factor was three nitrogen (N) fertilizer application levels (0, 100 and 200 kg N/ha). Results showed that with respect to increasing the levels of N fertilizer, the yield of bean sole cropping decreased but the yield of maize sole cropping increased. On the other hand, in intercropping systems with N fertilizer application, the yield of both crops increased. Results of total land equivalent ratio (LER) for both crops showed that the highest LER value under both 100 and 200 kg N/ha application was that of M1B1 (1 seed of maize after 1 seed of bean, consecutively, on a row with same distance). Under no N fertilizer application the highest LER value was that of M2B3 (2 seeds of maize after 3 seeds of bean, consecutively, on a row with same distance). Overall, it can be concluded that M1B1 is the best intercropping pattern in maize-bean intercropping systems and that the application of N fertilizer can be effective within practical settings of intercropping agriculture, resulting in higher yields.

Importance and production of chilli pepper; heat tolerance and efficient nutrient use under climate change conditions

  • Khaitov, Botir;Umurzokov, Mirjalol;Cho, Kwang-Min;Lee, Ye-Jin;Park, Kee Woong;Sung, JwaKyung
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.769-779
    • /
    • 2019
  • Chilli peppers are predominantly cultivated in open field systems under abiotic and biotic stress conditions. Abiotic and biotic factors have a considerable effect on plant performance, fruit quantity, and quality. Chilli peppers grow well in a tropical climate due to their adaptation to warm and humid regions with temperatures ranging from 18 to 30℃. Nowadays, chilli peppers are cultivated all around the world under different climatic conditions, and their production is gradually expanding. Expected climate changes will likely cause huge and complex ecological consequences; high temperature, heavy rainfall, and drought have adverse effects on the vegetative and generative development of all agricultural crops including chilli peppers. To gain better insight into the effect of climate change, the growth, photosynthetic traits, morphological and physiological characteristics, yield, and fruit parameters of chilli peppers need to be studied under simulated climate change conditions. Moreover, it is important to develop alternative agrotechnologies to maintain the sustainability of pepper production. There are many conceivable ideas and concepts to sustain crop production under the extreme conditions of future climate change scenarios. Therefore, this review provides an overview of the adverse impacts of climate change and discusses how to find the best solutions to obtain a stable chilli pepper yield.

Change in three dry rangeland species growth and soil properties by compost application

  • Sadeghi, Hossein;Shourije, Fatemeh Ansar;Masoudi, Masoud
    • Journal of Ecology and Environment
    • /
    • 제35권2호
    • /
    • pp.131-140
    • /
    • 2012
  • There are different types of compost used as soil conditioners and fertilizers. Plants can have different responses to different forms of compost. This field study was performed to examine the effects of different types of compost on growth factors of three dry rangeland species (Atriplex, $Atriplex$ $lentiformis$; Saltwort, $Seidlitzia$ $rosmarinus$; Haloxylon, $Haloxylon$ $persicum$) and soil properties. The experiment was conducted in the Fars Province of Iran during the year 2010-2011. Compost applications consisted of compost tea, solid compost (SC), solid and liquid mixture (MX) and no compost as the control. The study was a factorial experiment based on a randomized complete block design with 3 replications. The results showed that all the tested compost applications enhanced the growth traits of all three species. It was also demonstrated that the use of compost significantly increased the organic matter (1% probability level [PL]), nitrogen concentration (5% PL), phosphorous (5% PL) and potassium (5% PL) concentrations of the soil. The soil's pH level was unchanged (range, 7.3 to 7.6), and the sodium concentration was also significantly decreased (1% PL) by the use of compost. The higher responses were observed in canopy volume and soil sodium and the lower were observed in stem diameter and soil pH level. Among the three plants in the study, Atriplex showed the best response to the application of compost. Based on the results of this study, it can be recommended that the best compost application to increase growth and improve soil condition is the mixed compost (MX) for Atriplex and the SC for Saltwort and Haloxylon.

The optimal balance between sexual and asexual reproduction in variable environments: a systematic review

  • Yang, Yun Young;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • 제40권2호
    • /
    • pp.89-106
    • /
    • 2016
  • Many plant species have two modes of reproduction: sexual and asexual. Both modes of reproduction have often been viewed as adaptations to temporally or spatially variable environments. The plant should adjust partitioning to match changes in the estimated success of the two reproductive modes. Perennial plants showed that favorable habitats in soil nutrients or water content tend to promote clonal growth over sexual reproduction. In contrast, under high light-quantity conditions, clonal plants tend to allocate more biomass to sexual reproduction and less to clonal propagation. On the other hand, plants with chasmogamous and cleistogamous flowers provides with a greater tendency of the opportunity to ensure some seed set in any stressful environmental conditions such as low light, low soil nutrients, or low soil moisture. It is considered that vegetative reproduction has high competitive ability and is the major means to expand established population of perennial plants, whereas cleistogamous reproduction is insurance to persist in stressful sites due to being strong. Chasmogamous reproduction mainly enhances established and new population. Therefore, the functions of sexual and asexual propagules of perennial or annual plants differ from each other. These traits of propagule thus determine its success at a particular region of any environmental gradients. Eventually, if environmental resources or stress levels change in either space or time, species composition will probably also change. The reason based on which the plants differ with respect to favored reproduction modes in each environmental condition, may be involved in their specific realized niche.

Conservation of indigenous cattle genetic resources in Southern Africa's smallholder areas: turning threats into opportunities - A review

  • Nyamushamba, G.B.;Mapiye, C.;Tada, O.;Halimani, T.E.;Muchenje, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권5호
    • /
    • pp.603-621
    • /
    • 2017
  • The current review focuses on characterization and conservation efforts vital for the development of breeding programmes for indigenous beef cattle genetic resources in Southern Africa. Indigenous African cattle breeds were identified and characterized using information from refereed journals, conference papers and research reports. Results of this current review reviewed that smallholder beef cattle production in Southern Africa is extensive and dominated by indigenous beef cattle strains adaptable to the local environment. The breeds include Nguni, Mashona, Tuli, Malawi Zebu, Bovino de Tete, Angoni, Landim, Barotse, Twsana and Ankole. These breeds have important functions ranging from provision of food and income to socio-economic, cultural and ecological roles. They also have adaptive traits ranging from drought tolerant, resistance to ticks and tick borne diseases, heat tolerance and resistance to trypanosomosis. Stakeholders in the conservation of beef cattle were also identified and they included farmers, national government, research institutes and universities as well as breeding companies and societies in Southern Africa. Research efforts made to evaluate threats and opportunities of indigenous beef cattle production systems, assess the contribution of indigenous cattle to household food security and income, genetically and phenotypically characterize and conserve indigenous breeds, and develop breeding programs for smallholder beef production are highlighted. Although smallholder beef cattle production in the smallholder farming systems contributes substantially to household food security and income, their productivity is hindered by several constraints that include high prevalence of diseases and parasites, limited feed availability and poor marketing. The majority of the African cattle populations remain largely uncharacterized although most of the indigenous cattle breeds have been identified.