• Title/Summary/Keyword: Ecological modeling

Search Result 228, Processing Time 0.024 seconds

Modeling the Relationship between Land Cover and River Water Quality in the Yamaguchi Prefecture of Japan

  • Amiri, Bahman Jabbarian;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.343-352
    • /
    • 2006
  • This study investigated the relationship between land cover and the water quality variables in the rivers, which are located in the Yamaguchi prefecture of West Japan. The study area included 12 catchments covering $5,809\;Km^2$. pH, dissolved oxygen, suspended solid, E. coli, total nitrogen and total phosphorus were considered as river water quality variables. Satellite data was applied to generate land cover map. For linking alterations in land cover (at whole catchment and buffer zone levels) and the river water quality variables, multiple regression modeling was applied. The results indicated that non-spatial attribute (%) of land cover types (at whole catchment level) consistently explained high amounts of variation in biological oxygen demand (72%), suspended solid (72%) and total nitrogen (87%). At buffer zone-scale, multiple regression models that were developed to represent the linkage between the alterations of land cover and the river water quality variables could also explain high level of total variations in suspended solid (86%) and total nitrogen (91%).

Analysis of a Change in the Water-Balance after Application of Decentralized Rainwater Management Facilities - Based on the Results of the Hydrologic Modeling using the CAT - (분산식 빗물관리시설 적용에 따른 물수지 변화 분석 연구 - CAT을 이용한 수문모델링 결과를 토대로 -)

  • Lee, Tae-Goo;Han, Young-Hae
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • To analyze changes in the water-balance before and after using decentralized rainwater management facilities, this study carried out hydrologic modeling based on data including roof planting, rainwater use, infiltration and detention facilities applied to the sites. The results of the analysis are as follows: First, the total runoff quantity after facility installation was about 24% less than before. In particular, it showed that the surface runoff declined significantly. Second, the analysis of the effects of different decentralized rainwater management facilities revealed that the rooftop planting contributed to about a 3.5 times increase in actual evaporation than before. Third, the analysis of the effect of decentralized management facilities by different rainfall events showed that it turned to have about a 30% decreasing effect after facility installation for a monthly rainfall over 500mm or so and about 50% declining effect for a monthly rainfall about 200mm. As discussed above, the study confirmed that it is important to implement decentralized rainwater management facilities to improve inevitable changes in water-balance arising from development as it would be a significant alternative for sustainable urban development.

Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study (금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구)

  • Kim, Jae-Chul;Lee, Jiho;Yoo, Chulsang;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.

Aspects Of Architectural Design Using BIM Technologies

  • Tikhonova, Oleksandra;Selikhova, Yana;Donenko, Vasyl;Kulik, Mykhailo;Frolov, Denys;Iasechko, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.85-92
    • /
    • 2022
  • In this article, we look at the application of BIM (Building Information Modeling) in sustainable infrastructures. In response to global warming, energy shortages, and environmental degradation, people are trying to build eco-friendly, low-carbon cities and promote eco-friendly homes. A "green" building is the entire life cycle of a building that includes maximizing the conservation of resources (energy, water, land, and materials), protecting the environment, reducing pollution, providing people with healthy, comfortable, and efficient use of space, and establishing harmony between nature and architecture. In the field of ecological and sustainable buildings, BIM modeling can be integrated into buildings with analog energy, air flow analysis, and solar building ecosystems. Using BIM technologies, you can reduce the amount of waste and improve the quality of construction. These technologies create "visualization" of digital building models through multidimensional digital design solutions that provide" modeling and analysis "of Scientific Collaboration Platforms for designers, architects, utility engineers, developers, and even end users. Moreover, BIM helps them use three-dimensional digital models in project design and construction and operational management.

Modeling the Spatial Distribution of Black-Necked Cranes in Ladakh Using Maximum Entropy

  • Meenakshi Chauhan;Randeep Singh;Puneet Pandey
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2023
  • The Tibetan Plateau is home to the only alpine crane species, the black-necked crane (Grus nigricollis). Conservation efforts are severely hampered by a lack of knowledge on the spatial distribution and breeding habitats of this species. The ecological niche modeling framework used to predict the spatial distribution of this species, based on the maximum entropy and occurrence record data, allowed us to generate a species-specific spatial distribution map in Ladakh, Trans-Himalaya, India. The model was created by assimilating species occurrence data from 486 geographical sites with 24 topographic and bioclimatic variables. Fourteen variables helped forecast the distribution of black-necked cranes by 96.2%. The area under the curve score for the model training data was high (0.98), indicating the accuracy and predictive performance of the model. Of the total study area, the areas with high and moderate habitat suitability for black-necked cranes were anticipated to be 8,156 km2 and 6,759 km2, respectively. The area with high habitat suitability within the protected areas was 5,335 km2. The spatial distribution predicted using our model showed that the majority of speculated conservation areas bordered the existing protected areas of the Changthang Wildlife Sanctuary. Hence, we believe, that by increasing the current study area, we can account for these gaps in conservation areas, more effectively.

Vegetation Structure and Ecological Restoration Model of Quercus mongolica Community (신갈나무림의 식생구조와 생태적 복원모델)

  • Lee, Mi-Jeong;Song, Hokyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • The composition of species for each community of Quercus by vegetation and soil survey, the community classification by TWINSPAN, the structural characteristics of communities were used and analyzed during the period of 2000~2004 for Quercus mongolica forest. And the resulting suggestions for a subsequent planting model for forest are as follows. The Quercus mongolica community had the highest importance value for Quercus mongolica followed sequentially by Acer pseudosieboldianum, Acer mono, Rhododendron schlippenbachii, Tilia amurensis, Fraxinus rhynchophylla, and Fraxinus sieboldiana. As a result of suggesting a planting modeling for the Quercus mongolica communities in the areas with the warmth index of both $60.90{\sim}79.79^{\circ}C$ and $53.96{\sim}64.82^{\circ}C$, Quercus mongolica was absolutely dominant in case of the subtree layer for the accompaniment species of distribution in the planting modeling by tree layer in the two areas depending on the warmth index, while there were distinct differences shown in case of the lower tree layer. While Acer pseudosieboldianum, Tilia amurensis, Fraxinus rhynchophylla, Sorbus alnifolia, Acer mono, etc. were appeared in the subtree layer for the areas with the warmth index of $60.90{\sim}79.79^{\circ}C$. Cornus controversa, Quercus mongolica, Fraxinus sieboldiana, etc. were many appeared in the subtree layer for the areas with the warmth index of $53.96{\sim}64.82^{\circ}C$. And, when we made ecological Quercus mongolica community, subtree layer planting is different by warmth index.

Estimation of the Exploitable Carrying Capacity in the Korean Water of the East China Sea (한국 남해의 어획대상 환경수용량 추정 연구)

  • ZHANG, Chang-Ik;SEO, Young-Il;KANG, Hee-Joong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.513-525
    • /
    • 2017
  • In the estimation of the exploitable carrying capacity (ECC) in the Korean water of the East China Sea, two approaches, which are the ecosystem modeling method (EMM) and the holistic production method (HPM), were applied. The EMM is accomplished by Ecopath with Ecosim model using a number of ecological data and fishery catch for each species group, which was categorized by a self-organizing mapping (SOM) based on eight biological characteristics of species. In this method, the converged value during the Ecosim simulation by setting the instantaneous rate of fishing mortality (F) as zero was estimated as the ECC of each group. The HPM is to use surplus production models for estimateing ECC. The ECC estimates were 4.6 and 5.1 million mt (mmt) from EMM and HPM, respectiverly. The estimate from the EMM has a considerable uncertainty due to the lack of confidence in input ecological parameters, especially production/biomass ratio (P/B) and consumption/biomass ratio (Q/B). However, ECC from the HPM was estimated on the basis of relatively fewer assumptions and long time-series fishery data as input, so the estimate from the HPM is regarded as more reasonable estimate of ECC, although the ECC estimate could be considerd as a preliminary one. The quality of input data should be improved for the future study of the ECC to obtain more reliable estimate.

Data-Driven Modeling of Freshwater Aquatic Systems: Status and Prospects (자료기반 물환경 모델의 현황 및 발전 방향)

  • Cha, YoonKyung;Shin, Jihoon;Kim, YoungWoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.611-620
    • /
    • 2020
  • Although process-based models have been a preferred approach for modeling freshwater aquatic systems over extended time intervals, the increasing utility of data-driven models in a big data environment has made the data-driven models increasingly popular in recent decades. In this study, international peer-reviewed journals for the relevant fields were searched in the Web of Science Core Collection, and an extensive literature review, which included total 2,984 articles published during the last two decades (2000-2020), was performed. The review results indicated that the rate of increase in the number of published studies using data-driven models exceeded those using process-based models since 2010. The increase in the use of data-driven models was partly attributable to the increasing availability of data from new data sources, e.g., remotely sensed hyperspectral or multispectral data. Consistently throughout the past two decades, South Korea has been one of the top ten countries in which the greatest number of studies using the data-driven models were published. Among the major data-driven approaches, i.e., artificial neural network, decision tree, and Bayesian model, were illustrated with case studies. Based on the review, this study aimed to inform the current state of knowledge regarding the biogeochemical water quality and ecological models using data-driven approaches, and provide the remaining challenges and future prospects.

Regional Ecological Network Design for Wild Animals' Movement Using Landscape Permeability and Least-cost Path Methods in the Metropolitan Area of Korea (경관투과성 및 최소비용경로 분석을 통한 수도권 지역의 광역생태축 구축 연구)

  • Lee, Dong-Kun;Song, Won-Kyong;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.94-106
    • /
    • 2008
  • As populations inhabiting in natural ecosystem are fragmented by artificial barriers and habitats are destructed by development, extinction possibility of species is getting higher. It is necessary to design and to manage conservation areas and corridors considering animals' movement and migration for sustainable species diversity in present circumstances. 'Least-cost modeling' is one commonly employed approach in which dispersal costs are assigned to distinct habitat types and the last-costly dispersal paths among habitat patches are calculated using a geographical information system (GIS). This study aims to design ecological corridor using least-cost path method and to apply it to a regional ecological network considering movability of medium-large size mammals. This study was carried out over the metropolitan area, which has been deforested by rapid urbanization. Nevertheless there is connected with Gangwon province, Baekdudaegan mountain range and DMZ, considered where many forest species can migrate to this region. This study employs such an approach to develop least-cost path models for medium-large size mammals, have inhabited for this entire region. Considering those species, two forest areas as a source of species supply and forest areas more than 1,000ha are selected as focal forest areas. Movement and migration paths from species supply sources to focal forest areas are calculated by applying landscape permeability theory using land cover map, road density map and land slope map. Results showed least-cost paths from species supply sources to focal forest areas on two species. Wildcat and roe deer are different in some least-cost paths caused by their landscape permeability but paths show generally same specifics. The result of considering regional distribution of expected movement and migration paths to regional ecological network, low altitude mountains of western metropolitan area are evaluated important area for species connectivity. In national or regional levels ecological connectivity is essential to promote species diversity and to preserve integrated ecosystem. This study concludes that developing least-cost models from similar empirical data could significantly improve the utility of these tools.

The Study on the Developing Process of BIM Modeling for Urban-life-housing Based on Unit Modular (유닛모듈러 기반 도시형 생활주택의 BIM 모델링 프로세스 개발 연구)

  • Lee, Chang-Jae;Lim, Seok-Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.77-84
    • /
    • 2012
  • The current architectural design of unit modular has been based on 2D of CAD program, so unit modular character which needs unit information management, as a dried-member system, has no effect on design process. The purpose of this study is We have developed a suitable BIM design process, according to various works of construction, then tried to contribute to supply and activation of the urban-life-housing based on unit modular. The BIM modeling process based on unit modular has been in order of unit combination with preparing manual classification, and, it has been constructed, at construction site, from housing foundation to roof finish by Bottom-up method. At a manufacturing factory, it has been produced in order of 1) grouping materials and parts, 2) fabricating unit boxes, and 3) interference examination of unit boxes, and each order has been classified as housing structure, architecture, plumbing process separately. At a construction site, the fabrication has been done in order of, like as a real housing construction scenario, 1) RC foundation work 2) unit module job-site-fabrication work, 3) roof truss work, 4) plumbing and HVAC work, and 5) housing interior finish work. After modeling process, the interference examination on each work of construction has finally completed modeling. The Unit modular utilizing BIM modeling can make easy housing maintenance through systematic control with preparing manual of unit module information, and securing accurate and speedy construction information. And it will promote design credibility and create maximum effect of unit modular construction method, such as construction period reduction and upgrade of construction quality, etc., through the computer simulation as real as construction environment in cyber space, and with the interfering examination.