DOI QR코드

DOI QR Code

자료기반 물환경 모델의 현황 및 발전 방향

Data-Driven Modeling of Freshwater Aquatic Systems: Status and Prospects

  • 차윤경 (서울시립대학교 환경공학과) ;
  • 신지훈 (서울시립대학교 환경공학과) ;
  • 김영우 (서울시립대학교 환경공학과)
  • Cha, YoonKyung (School of Environmental Engineering, University of Seoul) ;
  • Shin, Jihoon (School of Environmental Engineering, University of Seoul) ;
  • Kim, YoungWoo (School of Environmental Engineering, University of Seoul)
  • 투고 : 2020.10.05
  • 심사 : 2020.11.12
  • 발행 : 2020.11.30

초록

Although process-based models have been a preferred approach for modeling freshwater aquatic systems over extended time intervals, the increasing utility of data-driven models in a big data environment has made the data-driven models increasingly popular in recent decades. In this study, international peer-reviewed journals for the relevant fields were searched in the Web of Science Core Collection, and an extensive literature review, which included total 2,984 articles published during the last two decades (2000-2020), was performed. The review results indicated that the rate of increase in the number of published studies using data-driven models exceeded those using process-based models since 2010. The increase in the use of data-driven models was partly attributable to the increasing availability of data from new data sources, e.g., remotely sensed hyperspectral or multispectral data. Consistently throughout the past two decades, South Korea has been one of the top ten countries in which the greatest number of studies using the data-driven models were published. Among the major data-driven approaches, i.e., artificial neural network, decision tree, and Bayesian model, were illustrated with case studies. Based on the review, this study aimed to inform the current state of knowledge regarding the biogeochemical water quality and ecological models using data-driven approaches, and provide the remaining challenges and future prospects.

키워드

참고문헌

  1. Alain, G. and Bengio, Y. (2016). Understanding intermediate layers using linear classifier probes, arXiv preprint arXiv:1610.01644.
  2. Altunkaynak, A. and Wang, K. H. (2011). A comparative study of hydrodynamic model and expert system related models for prediction of total suspended solids concentrations in Apalachicola Bay, Journal of Hydrology, 400(3-4), 353-363. https://doi.org/10.1016/j.jhydrol.2011.01.046
  3. Arhonditsis, G. B. and Brett, M. T. (2004). Evaluation of the current state of mechanistic aquatic biogeochemical modeling, Marine Ecology Progress Series, 271, 13-26. https://doi.org/10.3354/meps271013
  4. Arhonditsis, G. B., Adams-VanHarn, B. A., Nielsen, L., Stow, C. A., and Reckhow, K. H. (2006). Evaluation of the current state of mechanistic aquatic biogeochemical modeling: citation analysis and future perspectives, Environmental science & technology, 40(21), 6547-6554. https://doi.org/10.1021/es061030q
  5. Baker, R. E., Pena, J. M., Jayamohan, J., and Jerusalem, A. (2018). Mechanistic models versus machine learning, a fight worth fighting for the biological community?, Biology letters, 14(5), 20170660. https://doi.org/10.1098/rsbl.2017.0660
  6. Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations, Proceedings of the IEEE conference on computer vision and pattern recognition, 6541-6549.
  7. Castelvecchi, D. (2016). Can we open the black box of AI?, Nature News, 538(7623), 20. https://doi.org/10.1038/538020a
  8. Cha, Y., Cho, K. H., Lee, H., Kang, T., and Kim, J. H. (2017). The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers, Water research, 124, 11-19. https://doi.org/10.1016/j.watres.2017.07.040
  9. Cha, Y., Park, S. S., Kim, K., Byeon, M., and Stow, C. A. (2014). Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model, Water Resources Research, 50(3), 2518-2532. https://doi.org/10.1002/2013wr014372
  10. Cha, Y., Park, S. S., Lee, H. W., and Stow, C. A. (2016). A Bayesian hierarchical approach to model seasonal algal variability along an upstream to downstream river gradient, Water Resources Research, 52(1), 348-357. https://doi.org/10.1002/2015WR017327
  11. Choi, S. Y. and Seo, I. W. (2018). Prediction of fecal coliform using logistic regression and tree-based classification models in the North Han River, South Korea, Journal of Hydro-environment Research, 21, 96-108. https://doi.org/10.1016/j.jher.2018.09.002
  12. Cloern, J. E. and Jassby, A. D. (2010). Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems, Estuaries and coasts, 33(2), 230-241. https://doi.org/10.1007/s12237-009-9195-3
  13. Dabkowski, P. and Gal, Y. (2017). Real time image saliency for black box classifiers, Advances in Neural Information Processing Systems, 6967-6976.
  14. Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Romermann, C., Schroder, B., and Singer, A. (2012). Correlation and process in species distribution models: bridging a dichotomy, Journal of Biogeography, 39(12), 2119-2131. https://doi.org/10.1111/j.1365-2699.2011.02659.x
  15. Hutchinson, L., Steiert, B., Soubret, A., Wagg, J., Phipps, A., Peck, R., Charoin, J. E., and Ribba, B. (2019). Models and machines: how deep learning will take clinical pharmacology to the next level, CPT: pharmacometrics & systems pharmacology, 8(3), 131. https://doi.org/10.1002/psp4.12377
  16. Jeong, S. U. (2012). The state of the art of lake water quality modeling and applications, Magazine of the Korean Society of Agricultural Engineers, 54(1), 56-69. [Korean Literature]
  17. Kim, H. G., Hong, S., Jeong, K. S., Kim, D. K., and Joo, G. J. (2019). Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: case study of Nakdong River, Ecological Modelling, 398, 67-76. https://doi.org/10.1016/j.ecolmodel.2019.02.003
  18. Kim, H. K., Cho, I. H., Hwang, E. A., Kim, Y. J., and Kim, B. H. (2019). Benthic diatom communities in Korean estuaries: Species appearances in relation to environmental variables, International journal of environmental research and public health, 16(15), 2681. https://doi.org/10.3390/ijerph16152681
  19. Kim, S. E. and Seo, I. W. (2015). Artificial neural network ensemble modeling with conjunctive data clustering for water quality prediction in rivers, Journal of Hydro-Environment Research, 9(3), 325-339. https://doi.org/10.1016/j.jher.2014.09.006
  20. Kim, S. E., Seo, I. W., and Choi, S. Y. (2017). Assessment of water quality variation of a monitoring network using exploratory factor analysis and empirical orthogonal function, Environmental Modelling & Software, 94, 21-35. https://doi.org/10.1016/j.envsoft.2017.03.035
  21. Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S. (2019). Toward improved predictions in ungauged basins: Exploiting the power of machine learning, Water Resources Research, 55(12), 11344-11354. https://doi.org/10.1029/2019wr026065
  22. Kwon, Y. S., Bae, M. J., Hwang, S. J., Kim, S. H., and Park, Y. S. (2015). Predicting potential impacts of climate change on freshwater fish in Korea, Ecological Informatics, 29, 156-165. https://doi.org/10.1016/j.ecoinf.2014.10.002
  23. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning, Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  24. Lee, B., Kullman, S. W., Yost, E., Meyer, M. T., Worley Davis, L., Williams, C. M., and Reckhow, K. H. (2014). A Bayesian network model for assessing natural estrogen fate and transport in a swine waste lagoon, Integrated environmental assessment and management, 10(4), 511-521. https://doi.org/10.1002/ieam.1538
  25. Lundberg, S. M. and Lee, S. I. (2017). A unified approach to interpreting model predictions, In Advances in neural information processing systems, 4765-4774.
  26. Ma, J., Cheng, J. C., Lin, C., Tan, Y., and Zhang, J. (2019). Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques, Atmospheric Environment, 214, 116885. https://doi.org/10.1016/j.atmosenv.2019.116885
  27. Michielsen, A., Kalantari, Z., Lyon, S. W., and Liljegren, E. (2016). Predicting and communicating flood risk of transport infrastructure based on watershed characteristics, Journal of environmental management, 182, 505-518. https://doi.org/10.1016/j.jenvman.2016.07.051
  28. Ozesmi, S. L., Tan, C. O., and Ozesmi, U. (2006). Methodological issues in building, training, and testing artificial neural networks in ecological applications, Ecological Modelling, 195(1-2), 83-93. https://doi.org/10.1016/j.ecolmodel.2005.11.012
  29. Papernot, N. and McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning, arXiv preprint arXiv:1803.04765.
  30. Park, Y., Cho, K. H., Park, J., Cha, S. M., and Kim, J. H. (2015). Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea, Science of the Total Environment, 502, 31-41. https://doi.org/10.1016/j.scitotenv.2014.09.005
  31. Park, Y., Pyo, J., Kwon, Y. S., Cha, Y., Lee, H., Kang, T., and Cho, K. H. (2017). Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea, Water research, 126, 319-328. https://doi.org/10.1016/j.watres.2017.09.026
  32. Peters, D. P., Havstad, K. M., Cushing, J., Tweedie, C., Fuentes, O., and Villanueva-Rosales, N. (2014). Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology, Ecosphere, 5(6), 1-15.
  33. Pyo, J., Duan, H., Ligaray, M., Kim, M., Baek, S., Kwon, Y. S., Lee, H., Kang, T., Kim, K., Cha, Y., and Cho, K. H. (2020). An integrative remote sensing application of stacked autoencoder for atmospheric correction and cyanobacteria estimation using hyperspectral imagery, Remote Sensing, 12(7), 1073. https://doi.org/10.3390/rs12071073
  34. Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., and Soyeux, E. (2008). Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin, Remote Sensing of Environment, 112(11), 4009-4019. https://doi.org/10.1016/j.rse.2008.06.002
  35. Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 1135-1144.
  36. Robson, B. J., Arhonditsis, G. B., Baird, M. E., Brebion, J., Edwards, K. F., Geoffroy, L., Hebert, M. P., van Dongen-Vogels, V., Jones, E. M., Kruk, C., Mongin, M., Shimoda, Y., Skerratt, J. H., Trevathan-Tackett, S. M., Wild-Allen, K., Kong, X., and Steven, A. (2018). Towards evidence-based parameter values and priors for aquatic ecosystem modelling, Environmental modelling & software, 100, 74-81. https://doi.org/10.1016/j.envsoft.2017.11.018
  37. Rohani, A., Taki, M., and Abdollahpour, M. (2018). A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I), Renewable Energy, 115, 411-422. https://doi.org/10.1016/j.renene.2017.08.061
  38. Schuwirth, N., Borgwardt, F., Domisch, S., Friedrichs, M., Kattwinkel, M., Kneis, D., Kuemmerlen, M., Langhans, S. D., Martinez-Lopez, J., and Vermeiren, P. (2019). How to make ecological models useful for environmental management, Ecological Modelling, 411, 108784 https://doi.org/10.1016/j.ecolmodel.2019.108784
  39. Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists, Water Resources Research, 54(11), 8558-8593. https://doi.org/10.1029/2018wr022643
  40. Shin, J., Yoon, S., and Cha, Y. (2017). Prediction of cyanobacteria blooms in the lower Han River (South Korea) using ensemble learning algorithms, Desalination and Water Treatment, 84, 31-39. https://doi.org/10.5004/dwt.2017.20986
  41. Stow, C. A. and Cha, Y. (2013). Are chlorophyll a-total phosphorus correlations useful for inference and prediction?, Environmental science & technology, 47(8), 3768-3773. https://doi.org/10.1021/es304997p
  42. Tian, W., Liao, Z., and Wang, X. (2019). Transfer learning for neural network model in chlorophyll-a dynamics prediction, Environmental Science and Pollution Research, 26(29), 29857-29871. https://doi.org/10.1007/s11356-019-06156-0
  43. Wenger, S. J. and Olden, J. D. (2012). Assessing transferability of ecological models: an underappreciated aspect of statistical validation, Methods in Ecology and Evolution, 3(2), 260-267. https://doi.org/10.1111/j.2041-210X.2011.00170.x
  44. Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., Fielding, A. H., Bamford, A. J., Stephan, B., Barbosa, A. M., Dormann, C. F., Elith, J., Embling, C. B., Ervin, G. N., Fisher, R., Gould, S., Graf, R. F., Gregr, E. J., Halpin, P. N., Heikkinen, R. K., Heinanen, S., Mannocci, L., Mellin, C., Mesgaran, M. B., Moreno-Amat, E., Mormede, S., Novaczek, E., Oppel, S., Crespo, G. O., Peterson, A. T., Rapacciuolo, G., Roberts, J. J., Ross, R. E., Scales, K. L., Schoeman, D., Snelgrove, P., Sundblad, G., Thuiller, W., Torres, L. G., Verbruggen, H., Wang, L., Wenger, S., Whittingham, M. J., Zharikov, Y., Zurell, D., and Sequeira, A. M. (2018). Outstanding challenges in the transferability of ecological models, Trends in ecology & evolution, 33(10), 790-802. https://doi.org/10.1016/j.tree.2018.08.001
  45. Yim, I., Shin, J., Lee, H., Park, S., Nam, G., Kang, T., Cho, K. H., and Cha, Y. (2020). Deep learning-based retrieval of cyanobacteria pigment in inland water for in-situ and airborne hyperspectral data, Ecological Indicators, 110, 105879. https://doi.org/10.1016/j.ecolind.2019.105879
  46. Zhai, B. and Chen, J. (2018). Development of a stacked ensemble model for forecasting and analyzing daily average PM2. 5 concentrations in Beijing, China, Science of The Total Environment, 635, 644-658. https://doi.org/10.1016/j.scitotenv.2018.04.040