• Title/Summary/Keyword: Ecological Monitoring

Search Result 661, Processing Time 0.031 seconds

Population Structure and Fine-scale Habitat Affinity of Cymbidium kanran Protected Area as a Natural Monument (천연기념물 한란 보호구역의 개체군 구조 및 미세 서식처 선호성)

  • Shin, Jae-Kwon;Koo, Bon-Youl;Kim, Han-Gyeoul;Kwon, He-Jin;Son, Sung-Won;Lee, Jong-Seok;Cho, Hyun-Je;Bae, Kwan-Ho;Cho, Young-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.176-185
    • /
    • 2014
  • There are no population ecological research on the natural monument (No. 191) Jeju Cymbidium kanran in South Korea. In this study, we analyzed the population structure and fine-scale habitat affinity of C. kanran in Sanghyo-dong, Jejudo Island from Oct. 2013 to Feb. 2014. We observed total of 1,237 individuals (4,341 pseudobulbs) of C. kanran (989.6 population $ha^{-1}$) within (1.25 ha) and only 17 (1.4%) individuals were inflorescent. In 60.9% of the entire populations, disease symptoms such as spots and blight leaves were observed. C. kanran populaton exhibited reverse-J shaped size distribution based on leaf area classes as individual size parameter. The three size related attributes of C. kanran (no. of pseudobulb $r_s$=-0.159, no. of leaves $r_s$=-0.148 and leaf arera $r_s$=-0.114) and soil temperature revealed a negative relationship (p<0.0001). Most of C. kanran (95.4%) were grown under Castamopsis cuspidata and spatially, C. kanran were strongly clumped at all distances. Population characteristics of C. kanran in the study area were likely originated from species habitat affinity and successional environment. Through this study, base line data for C. kanran's habitat monitoring was established and conservation measures based on population characteristics were discussed.

Temporal Changes of Hyalessa fuscata Songs by Climate Change (기후변화에 의한 참매미 번식울음 시기 변화 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.2
    • /
    • pp.244-251
    • /
    • 2018
  • The present study aimed to identify the influence of climate change on mating songs of Cicadidae in a phenological perspective. The research sites were located in the central part of the Korean peninsula in which phenological observations by the Meteorological Office are made. The material provided by the Meteorological Office was used for long term phenological analysis. The findings demonstrated, First, the phenological monitoring of cicada is an effective index to detect ecological changes due to climate change, thus indicating the importance of long term phenological investigations for future studies. Second, the analysis on the phenological changes of H. fuscata presented a trend in which the first songs were made at increasingly earlier and later dates, respectively. The phenological data on H. fuscata and average temperatures exhibited a significant negative correlation between the initial mating song period and the average temperatures of June. Furthermore, there was also a significant negative correlation for precipitation in October with the end time and total duration of H. fuscata song. Third, in the regression analysis of the start of H. fuscata song and meteorological factors in Seoul, increasing average air temperature in spring (March to June), which includes June, was associated with an earlier start time of H. fuscata song, with calling starting approximately 3.0-4.5 days earlier per $1^{\circ}C$ increase. Fourth, in the regression analysis of the end of H. fuscata song and meteorological factors in Seoul, increased mean precipitation in October was associated with an early end time and an overall reduction in the length of the song period. The end time of song decreased by approximately 0.78 days per 1mm increase in precipitation, and the total length of the song period decreased by 0.8 days/1mm. This research is important, as it is the initial research to identify the phenological changes in H. fuscata due to climate change.

Distribution Characteristics and Management Plan of the Wisteria Habitat (No. 176 natural monument) of Beomeosa Temple in Busan (부산 범어사 등나무군락지의 등나무 분포 특성 및 관리방안)

  • Lee, Chang-Woo;Oh, Hae-Seong;Lee, Cheol-Ho;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.77-86
    • /
    • 2017
  • A study on the population ecology of gregarious Wisteria habitat was conducted in Beomeosa temple, Busan. The area has been protected since it was designated as No. 176 natural monument in 1966. Such a large habitat of native wisteria (Wisteria floribunda DC.) in Korea is very rare so that it has a very high academic value. However, there are no high-resolution researches on the distribution and ecology of wisteria in the Gregarious Wisteria Habitat of Beomeosa Temple. The study aimed to identify the distribution and characteristics of wisteria populations in the Wisteria habitat. The study identified the distribution of Wisteria, RCC, the climbing direction, the plant and flora in the research area in the Gregarious Wisteria Habitat of Beomeosa Temple in Busan and the surrounding areas based on an on-site research. As a result, the total number of the wisteria populations in the research area was confirmed to be 1,158 and the RCC of wisteria was on average 69.0 mm (${\pm}45.5$) and in maximum 365 mm. In terms of the climbing direction, the number of wisteria that climbs clockwise or counterclockwise was determined to be 40. It was identified that there are 28 taxa of the climbing plant species and the wisteria of the same kind was the most favorable. The populations were found to be dispersed adjacent to the valleys, and were found to be maintained by constant disturbance. 76.6 % of the population was found to be distributed in the valley forest, and the Carpinus tschonoskii-Pseudosasa japonica forest, Pueraria lobata community and Pinus densiflora forest were found to be relatively dispersed. The study proposed to conduct the follow-up researches to preserve the wisteria that is spreading in this research area, the wisteria with the highest RCC and regional habitat through continuous monitoring; and maintain the protection area of No. 176 natural monument; and discussed the management measures and approaches that reflect the habitat.

The Variation of Benthic Macroinvertebrates Caused by Erosion Control Works in a Torrential Stream - Focused on Variation of Benthic Macroinvertebrates Analyzed immediately after Construction Works - (황폐계류의 사방공작물 시공에 따른 저서성 대형무척추동물상의 변화 - 시공 직후의 변화를 중심으로 -)

  • Lee, Do-Hyung;Lee, Ki-Hwan;Lee, Heon-Ho;Ma, Ho-Seop;Bae, Kwan-Ho;Kim, Jong-Hyon
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.4
    • /
    • pp.353-364
    • /
    • 2009
  • This study was conducted to evaluate the effect of erosion control works on the stream ecosystem in a mountain torrential stream. The species composition of benthic macroinvertebrates and biological water quality were investigated before and after construction of erosion control works at 5 sites. The total number of benthic macroinvertebrates before construction was 3,086 individuals including 4 phyla, 6 classes, 11 orders, 22 families, and 25 species, but after construction it has decreased to 1,208 individuals including 4 phyla, 6 classes, 10 orders, 17 families, and 19 species. Especially, the diversity, richness, and evenness indices, which were calculated based on existing number of biological species, have decreased or not produced at the erosion control sites, where biological species were not found or the minimum number of species were found. The results of community analysis of benthic macroinvertebrates and ESB(Ecological Score of Benthic macroinvertebrate community) indicated that the environmental qualities of the stream based on saprobity, environmental condition, and water quality decreased after the construction at all sites: before construction, the top of the stream was satisfactory and some satisfactory, the middle was some defectiveness, and the lower was defectiveness and very defectiveness; after construction, all parts of the stream except some parts of the top were very defectiveness. Moreover, the water quality of torrential stream was rated between I to III before construction, but after construction, it declined to $IV{\sim}V$ except control. The habitat damage of benthic macro invertebrates occurred at all investigation sites after the construction of erosion control works led to reduction of the number of biological species and water quality deterioration. The results reported in this study were collected directly after the construction of erosion control works. Therefore, additional studies are needed to further explore the effect of disaster-prevention of erosion control works and the recovery process of stream ecosystem through long term monitoring.

Early Responses of Planted Quercus serrata Seedlings and Understory Vegetation to Artificial Gap Treatments in Black Locust Plantation (아까시나무림에서 인공 숲틈 처리에 대한 졸참나무 식재목 및 하층식생의 초기 반응)

  • Cho, Yong-Chan;Kim, Jun-Soo;Lee, Jung-Hyo;Lee, Heon-Ho;Ma, Ho-Seob;Lee, Chang-Seok;Cho, Hyun-Je;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.94-105
    • /
    • 2009
  • Black locust (Robinia pseudoacacia) stand is representative lowland exotic plantation with low ecological quality and arrested succession in South Korea. To facilitate succession and restore natural vegetation, small canopy gaps (${\sim}57m^2$), which can modify minimally structural variables and reduce restoration related disturbances on stand, was established in the black locust stand, and oak (Quercus serrata) seedlings were introduced in the gap. Two types of varying levels were introduced for gap creation; cutting (C) and girdling (G) on canopies. Understory removal (CU and GU) treatment was applied as subtypes of structural modification. Growth (diameter, height and leaf area) of target species and responses (species composition, diversity and coverage) of understory community were monitored during study years (2007~2008). Canopy openness was different significantly among treatments but not for light availability. Based on the result of logistic regression, growth of height and leaf area of seedlings were significant variables on seedling survival. Height and leaf area of seedlings were increased during study years, although radial growth was reduced. During study years, there were no significant differences in species composition and diversity, and total coverage increased about 20%. Increase of resources by gap creation and understory removal likely affect growth of target species. Small gap creation was effective to reduce understory responses in composition and diverstiy. Synthesized, growth of target species and responses of understory community to small canopy gap creation exhibited, in short term, possibility of utilization in alternative forest restoration and management option. Long-term monitoring is necessary to certificate effect of artificial gap creation on forest restoration.

Analysis of Environmental Factors and Change of Vascular Plant Species along an Elevational Gradients in Baekdansa, Mt. Taebaeksan National Park (태백산국립공원 백단사코스의 고도별 관속식물상 변화와 환경요인 분석)

  • An, Ji-Hong;Park, Hwan-Joon;Lee, Sae-rom;Seo, In-Soon;Nam, Gi-Heum;Kim, Jung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.378-401
    • /
    • 2019
  • This study generated a list of plants in eight sections from the Baekdansa ticket office (874m) to Cheonjedan (1,560m) divided in the interval of 100m above sea level to examine the species diversity patterns and distribution changes of the vascular plants at different altitudes in Taebaeksan National Park. Four site surveys found a total of 385 taxa: 89 families, 240 genera, 345 species, 5 subspecies, 34 varieties, and 1 form. A result of analyzing the change of species diversity along elevational gradients showed that it decreased with increasing elevation and then increased from a certain section. A result of analyzing habitat affinity types showed that the proportion of forest species increased with increasing elevation. On the other hand, the ruderal species appeared at a high rate in the artificial interference section. A result of comparing the proportion of woody and herb plants showed that the woody plants gradually increased with elevation and rapidly decreased in the artificial interference section. On the other hand, the herb plants showed the opposite trend. A result of analyzing the change of distribution of species according to altitude with the DCA technique showed that the vascular plants were divided into three groups according to the elevation in order on the I axis with the boundaries at 900m and 1,300m above sea level. The arrangement of each stand from right to left along the altitude on the I axis with a significant correlation with warmth index (WI) confirmed that the temperature change along the altitude could affect the distribution of vascular plants, composition, and diversity. Therefore, the continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. We expect that the results of this study will be used as the basic data for establishing the measurement measures related to the preservation of biodiversity and climate change.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

A Study on Control Possibility of Ambrosia trifida L., an Invasive Alien Plant by the Feeding of Ophraella communa LeSage (돼지풀잎벌레의 섭식에 의한 생태계교란 식물인 단풍잎돼지풀의 제어 가능성 연구)

  • SooIn Lee;JaeHoon Park;EuiJoo Kim;JiWon Park;JungMin Lee;YoonSeo Kim;SeHee Kim;YeoBin Park;EungPill Lee
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.184-195
    • /
    • 2023
  • To develop an effective management plan for Ambrosia trifida L., an invasive alien plant in Korea, we assessed the potential of Ophraella communa LeSage as a biological control agent. This involved investigating the host specificity of the herbivore Ophraella communa LeSage, its annual travel distance, and the impact of this insect on the fitness of Ambrosia trifida L. We confirmed the host plant preference of Ophraella communa LeSage. The travel distance of this insect was determined by monitoring its appearance in selected Ambrosia trifida L. communities without these insects at distances of 10, 20, 30, and 100 meters, based on the locations where the presence of Ophraella communa LeSage was observed. The growth, reproductive, and physiological responses of Ambrosia trifida L. were measured according to feeding by Ophraella communa LeSage. As a result, Ophraella communa LeSage fed on only three taxa and moved short distances within a radius of 30 m per year from the host. The feeding behavior of the herbivore had a negative impact on the growth, reproductive, and physiological responses of Ambrosia trifida L. And the plant's growth and reproduction improved with increasing distance from the herbivore. Furthermore, the introduction of herbivores was able to control over 90% of Ambrosia trifida L. when the coverage of the Ambrosia trifida L. group was below 50%. However, the effectiveness of the removal decreased when the coverage exceeded 90%. These results are likely to be utilized by Ophraella communa LeSage as an ecological control agent. It is advantageous to introduce them in spring (May) when the coverage is low to maximize the effectiveness of control.

Review of the Korean Indigenous Species Investigation Project (2006-2020) by the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea (한반도 자생생물 조사·발굴 연구사업 고찰(2006~2020))

  • Bae, Yeon Jae;Cho, Kijong;Min, Gi-Sik;Kim, Byung-Jik;Hyun, Jin-Oh;Lee, Jin Hwan;Lee, Hyang Burm;Yoon, Jung-Hoon;Hwang, Jeong Mi;Yum, Jin Hwa
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.119-135
    • /
    • 2021
  • Korea has stepped up efforts to investigate and catalog its flora and fauna to conserve the biodiversity of the Korean Peninsula and secure biological resources since the ratification of the Convention on Biological Diversity (CBD) in 1992 and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits (ABS) in 2010. Thus, after its establishment in 2007, the National Institute of Biological Resources (NIBR) of the Ministry of Environment of Korea initiated a project called the Korean Indigenous Species Investigation Project to investigate indigenous species on the Korean Peninsula. For 15 years since its beginning in 2006, this project has been carried out in five phases, Phase 1 from 2006-2008, Phase 2 from 2009-2011, Phase 3 from 2012-2014, Phase 4 from 2015-2017, and Phase 5 from 2018-2020. Before this project, in 2006, the number of indigenous species surveyed was 29,916. The figure was cumulatively aggregated at the end of each phase as 33,253 species for Phase 1 (2008), 38,011 species for Phase 2 (2011), 42,756 species for Phase 3 (2014), 49,027 species for Phase 4 (2017), and 54,428 species for Phase 5(2020). The number of indigenous species surveyed grew rapidly, showing an approximately 1.8-fold increase as the project progressed. These statistics showed an annual average of 2,320 newly recorded species during the project period. Among the recorded species, a total of 5,242 new species were reported in scientific publications, a great scientific achievement. During this project period, newly recorded species on the Korean Peninsula were identified using the recent taxonomic classifications as follows: 4,440 insect species (including 988 new species), 4,333 invertebrate species except for insects (including 1,492 new species), 98 vertebrate species (fish) (including nine new species), 309 plant species (including 176 vascular plant species, 133 bryophyte species, and 39 new species), 1,916 algae species (including 178 new species), 1,716 fungi and lichen species(including 309 new species), and 4,812 prokaryotic species (including 2,226 new species). The number of collected biological specimens in each phase was aggregated as follows: 247,226 for Phase 1 (2008), 207,827 for Phase 2 (2011), 287,133 for Phase 3 (2014), 244,920 for Phase 4(2017), and 144,333 for Phase 5(2020). A total of 1,131,439 specimens were obtained with an annual average of 75,429. More specifically, 281,054 insect specimens, 194,667 invertebrate specimens (except for insects), 40,100 fish specimens, 378,251 plant specimens, 140,490 algae specimens, 61,695 fungi specimens, and 35,182 prokaryotic specimens were collected. The cumulative number of researchers, which were nearly all professional taxonomists and graduate students majoring in taxonomy across the country, involved in this project was around 5,000, with an annual average of 395. The number of researchers/assistant researchers or mainly graduate students participating in Phase 1 was 597/268; 522/191 in Phase 2; 939/292 in Phase 3; 575/852 in Phase 4; and 601/1,097 in Phase 5. During this project period, 3,488 papers were published in major scientific journals. Of these, 2,320 papers were published in domestic journals and 1,168 papers were published in Science Citation Index(SCI) journals. During the project period, a total of 83.3 billion won (annual average of 5.5 billion won) or approximately US $75 million (annual average of US $5 million) was invested in investigating indigenous species and collecting specimens. This project was a large-scale research study led by the Korean government. It is considered to be a successful example of Korea's compressed development as it attracted almost all of the taxonomists in Korea and made remarkable achievements with a massive budget in a short time. The results from this project led to the National List of Species of Korea, where all species were organized by taxonomic classification. Information regarding the National List of Species of Korea is available to experts, students, and the general public (https://species.nibr.go.kr/index.do). The information, including descriptions, DNA sequences, habitats, distributions, ecological aspects, images, and multimedia, has been digitized, making contributions to scientific advancement in research fields such as phylogenetics and evolution. The species information also serves as a basis for projects aimed at species distribution and biological monitoring such as climate-sensitive biological indicator species. Moreover, the species information helps bio-industries search for useful biological resources. The most meaningful achievement of this project can be in providing support for nurturing young taxonomists like graduate students. This project has continued for the past 15 years and is still ongoing. Efforts to address issues, including species misidentification and invalid synonyms, still have to be made to enhance taxonomic research. Research needs to be conducted to investigate another 50,000 species out of the estimated 100,000 indigenous species on the Korean Peninsula.

Characristics and Management Plans of Myeongwoldae and Myeongwol Village Groves Located in, Jeju (제주 팽림월대(彭林月臺)의 경관특성 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Chol, Yung-Hyun;Kahng, Byung-Seon;Kim, Young-Suk
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • This study was conducted to identify the spacialty, to illuminate the existence and values of Myeongwoldae(明月臺) and Forest Myeongwol, and to suggest the sustainable usage, preservation and management plans with the purpose of ecological and cultural landscaping characteristic and value identification. The result of the study is as follows. Castle Myeongwol and Port Myeongwol shows the status of Hallim-eup Myeongwol District which is the administrative center of western Jeju as well as is the fortress. Building Wolgyejeongsa and School Woohakdang, the head temple of education and culture, located in Myeongwol District represents the spaciality of Myeonwol-ri which was the center of education. Stand Myeongwol is one of the most representative Confucian cultural landscapes in Jeju Island and the field of communion with nature where scholars enjoy poetries, nature, changgi(Korean chess), and go in the Joseon Dynasty period. It was found that the current relics of Myeongwoldae was recovered through the maintenance project conducted by Youth Group Myeongwol composed with Hongjong-si(洪鍾時) as the center during the Japanese colonial era in 1931. It seems that the stonework of Myeongwoldae composed of three levels in the order of square, octagon, and circle based on the heaven-man unity theory of Confucianism and the octagon in the middle is the messenger of Cheonwonjibang(天圓地方), in other words, between the square-shaped earth and the circle-shaped sky. It is assumed that both Grand Bridge Myeongwol and Bridge Myeongwol were constructed as arched bridges in early days. Bridge Myeongwol is the only arched bridge remaining in Jeju Island now, which has the modern cultural heritage value. In Forest Myeongwol, 97 taxa of plants were confirmed and in accordance with 'Taxonomic Group and Class Criteria of Floristic Specific Plants', eight taxa were found; Arachniodes aristata of FD IV and Ilex cornuta, Piper kadsura, Litsea japonica, Melia azedarach, Xylosma congestum, Richosanthes kirilowii var. japonica, Dichondra repens, Viburnum odoratissimum var. awabuki of FD III. Otherwise, 14 taxa of naturalized plants including Apium leptophylihum which is imported to Jeju Island only were confirmed. In Forest Myeongwol, 77 trees including 41 Celtis sinensis, 30 Aphananthe aspera, two Wylosma congestum, a Pinus densiflora, a Camellia japonica, a Melia azedarach, and an Ilex cornuta form a colony. Based on the researched data, the preservation and plans of Myeongwoldae and Forest Myeongwol is suggested as follows. Myeongwoldae, Bridge Myeongwol, and Forest Myeongwol should be managed as one integrated division. Bridge Myeongwol, an arched bridge which is hard to be found in Jeju Island is a high-standard stonework requiring long-term preservation plans. Otherwise, Grand Bridge Myeongwol that is exposed to accident risks because of deterioration and needs safety diagnosis requires measures according to the result of precise safety diagnosis. It is desirable to restore it to a two-sluice arched bridge as its initial shape and to preserve and use it as a representative local landmark with Stand Myeongwol. In addition, considering the topophsis based on the analysis result, the current name of Jeju Special Self-Governing Province Monument No. 19 'Myoengwol Hackberry Colony' should change to 'Myeongwol Hackberry-Muku Tree Colony'. In addition, the serial number system which is composed without distinction of hackberry and muku tree should be improved and the regular monitoring of big and old trees, specific plants, and naturalized species is required.