• Title/Summary/Keyword: Ecological Material

Search Result 383, Processing Time 0.037 seconds

Importance of the Mixotrophic Ciliate Myrionecta rubra in Marine Ecosystems (해양 생태계 내에서 혼합영양 섬모류 Myrionecta rubra의 중요성)

  • Myung, Geum-Og;Kim, Hyung-Seop;Jang, Keon-Gang;Park, Jong-Woo;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.178-185
    • /
    • 2007
  • Myrionecta rubra Jankowski 1976(=Mesodinium rubrum Lohmann 1908), a mixotrophic ciliate, is very common and often causes recurrent red tides in diverse marine environments. Since the report on the first laboratory strain of this species in 2000, papers on its novel ecological role and evolutionary importance have been high lighted. This review paper is prepared to promote the de novo recognition M. rubra as a marine mixotrophic species. M. rubra is a ciliate which is able to photosynthesize using plastids originated from cryptophyte (including Teleaulax sp. and Geminigera sp.) prey cells (i.e. kleptoplastidic ciliate). Recently, novel bacterivory of M. rubra was firstly reported. Thus, the nutritional modes of M. rubra include photosynthesis, bacterivory, and algivory. In turn, M. rubra was reported as the prey species of metazoan predators such as calanoid copepods, mysids, larvae of ctenophore and anchovy, and spats of bivalves. In addition, it was reported that dinoflagellate Dinophysis causing diarrhetic shellfish poisoning is one among the predators of M. rubra. Thus, M. rubra, a marine mixotrophic ciliate, may play a pivotal role as a common linking ciliate for the flow of energy and organic material in pelagic food webs.

Fresh and hardened properties of expansive concrete utilizing waste aluminum lathe

  • Yasin Onuralp Ozkilic;Ozer Zeybek;Ali Ihsan Celik;Essam Althaqafi;Md Azree Othuman Mydin;Anmar Dulaimi;Memduh Karalar;P. Jagadesh
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.595-608
    • /
    • 2024
  • In this study, aluminum lathe waste was used by replacing aggregates in certain proportions in order to obtain expansive concrete using recycled materials. For this reason, five different aluminum wastes of 1%, 2%, 3%, 4% and 5% were selected and also reference without aluminum waste was produced. Based on the mechanical tests conducted, which included slump, compression, splitting tensile, and flexural tests, it was evident that the workability of the material declined dramatically once the volume ratio of aluminum exceeded 2%. As determined by the compressive strength test (CST), the CS of concrete (1% aluminum lathe wastes replaced with aggregate) was 11% reducer than that of reference concrete. It was noted that the reference concrete's CS values, which did not include aluminum waste, were greater than those of the concrete that contained 5% aluminum. When comparing for splitting tensile strength (STS), it was observed that the results of STS generally follow the parallel inclination as the CS. The reduction in these strengths when 1% aluminum is utilized is less than 10%. These ratios modified 18% when flexural strength (FS) is considered. Therefore, 1% of aluminum waste is recommended to obtain expansive concrete with recycled materials considering minimum loss of strength. Moreover, Scanning Electron Microscope (SEM) analysis was performed and the results also confirm that there was expansion in the aluminum added concrete. The presence of pores throughout the concrete leads to the formation of gaps, resulting in its expansion. Additionally, for practical applications, basic equations were developed to forecast the CS, STS, and FS of the concrete with aluminum lathe waste using the data already available in the literature and the findings of the current study. In conclusion, this study establishes that aluminum lathe wastes are suitable, readily available in significant quantities, locally sourced eco-materials, cost-effective, and might be selected for construction using concrete, striking a balance among financially and ecological considerations.

Shear Strength and Erosion Resistance Characteristics of Stabilized Green Soils (토양안정재를 혼합한 녹생토의 전단강도 및 침식저항특성)

  • Oh, Sewook;Jeon, Jinchul;Kim, Donggeun;Lee, Heonho;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.45-52
    • /
    • 2015
  • With the rising interest in the environment, more attention on ecological restoration for damaged slope surface to restore its original state has been drawn. Generally, the most useful method is vegetation based spray work. This method uses green soil including sewage sludge, sawdust, paper sludge, and weathered granite soil. However, because there are neither accurate information nor test values about green soil, green soil is often lost by environmental factors such as rainfalls and strong winds. To solve the problem of green soil, it is necessary to prepare design standards about green soil, and conduct studies to deal with green soil loss in consideration of various variables including basic material property, soil quality of slope surface, and weather. This study was conducted in the mixture of green soil and eco-friendly soil stabilizer. With green soil, basic material property test and compaction test were conducted for the analysis on the basic characteristics of green soil. In the mixture with soil stabilizer at a certain ratio, we conducted shear strength test depending on the ratio in order to analyze the maximum shear strength, cohesion and the change in internal friction angles. Furthermore, in the mixture ratio of green soil and soil stabilizer, which is the same as the ratio in the shear strength test, an inclination of slope surface was made in laboratory for the analysis on erosion and germination rate. Finally, this study evaluated the most effective and economic mixing ratio of soil stabilizer to cope with neighboring environmental factors. According to the test, the shear strength of green soil increased up to 51% rely onto the mixing ratio of and a curing period, and its cohesion and internal friction angle also gradually increases. It is judged that the mixture of soil stabilizer was effective in improving shear strength and thereby increased the stability of green soil.

Landscape Composition Based on Placement and Harmony in the Namgea Suhwon (치(置)와 화(和)의 개념으로 분석한 남계서원의 경관짜임)

  • Rho, Jae-Hyun;Shin, Sang-Sup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.72-85
    • /
    • 2009
  • This study attempts to examine the principles of landscape composition for a 'Suhwon(書院)' and the meaning and value of its traditional landscape architecture, in order to apply the results to the design of modern landscape architecture. A 'Suhwon' is a vital space containing the form and meaning of human activity. This study analyzes the characteristics of landscape composition in the construction of the Namgea Suhwon, located in Hamyang, by examining the form and meaning of its area and composition. The Namgea Suhwon was constructed with a suitable configuration and harmony in a good location, neither field nor mountain, and which encompasses transcendence and a return after passage through a period of birth and abundance. Its appearance means 'life existence and hidden death(生居死幽)'. Its spatial system is a reflection of the idea of Samshinoje(三神五帝: The three abilities of Providence and its five subjects) connected with Ilsangje -Samshin -Ohje. It was built based on the idea of Biryebudong(非禮不動) meaning that one should follow only good decorum and avoid discourtesy, complying with "the frame of decorum" developed by the family rites of Chu Hsi. The environmental design of the Namgea Suhwon was interrupted by the material confrontation between mountains and water and a binary code system, such as front to rear, length to breadth, and movement to stillness. The design did not adhere to stiff axes, but pursued the harmonic principles of asymmetric balance in the building and the yard, which are very naturalistic. The name 'Namgea Suhwon' is closely related with the view of placement(置) and harmony(和), which are unified with the function and meaning formed by connecting Sung Confucianism with the Pungsu-Sasinsa structure in the layout of the grounds. When examining the D/H ratio of the building and yard, it can be seen that the spaces of Ganghak, Yusang and Jehyang were built appropriately, according to the natural characteristics of each space, such as a sense of openness, enclosure, tension, relief, enhancement, and hierarchical order. The spaces also reflect human scale concepts that take advantage of auditory features. The transition process after the construction of 'Namgea Suhwon' reveals the intentions of the builder to create an ecological landscape composition based on Placement and Harmony. Placement embodies' a purposeful space in which nature and the building are connected naturally, 'incomplete open space pursuing completion', and 'potential beauty in which tension and relaxation are repeated'. Harmony embodies 'order and continuity having a sense of unity with the natural environment' and the 'sharing of daily life and memory'. 'Namgea Suhwon' contains many ideas for landscape planning, land use and the design of a campus environment.

Environmental and Ecological Consequences of Submarine Groundwater Discharge in the Coastal Areas of the Korea Peninsula (한반도 연안 해역에서 해저 지하수 유출의 환경 생태학적 중요성)

  • KIM GUEBUEM;HWANG DONG-WOON;RYU JAE-WOONG;LEE YONG-WOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.204-212
    • /
    • 2005
  • Recognition has emerged that nutrient inputs from the submarine discharge of fresh, brackish, and marine groundwaters into the coastal ocean are comparable to the inputs via river discharge. The coastal areas of the Korea peninsula and adjacent seas exhibit particular importance in the role of submarine groundwater discharge (SGD), in terms of the magnitude of SGD and associated continental material fluxes. For example, in the southern sea of Korea, SGD transports excess nutrients into the coastal regions and thus appears to influence ecosystem changes such as the outbreak of red tides. Around volcanic island, Jeju, which is composed of high permeability rocks, the amount of SGD is higher by orders of magnitude relative to the eastern coast of North America where extensive SGD studies have been conducted. In particular, nutrient discharge through SGD exerts a significant control on coastal ecosystem changes and results in benthic eutrophication in semi-enclosed Bang-du bay, Jeju. In the entire area of the Yellow Sea, tile submarine discharge of brackish groundwater and associated nutrients are found to rival the river discharges into the Yellow Sea, including those through Yangtze River, Han River, etc. In the eastern coast of the Korea peninsula, SGD is significantly higher during summer than winter due to high hydraulic gradients and due to wide distribution of high permeability sandy zones, faults, and fractures. On the other hand, in the estuarine water, downstream construction of the dam in the Nakdong River, SGD was highest when the river discharge was lowest (but water level of the dam was highest). This suggests that even though there is no visible freshwater discharge into this estuary, the discharge of chemical species is significant through SGD. On the basis of the results obtained from the coastal areas of the Korea peninsula, SGD is considered to be an important pathway of continental contaminants influencing tidal-flat ecosystems, red tides, and coral ecology. Thus, future costal management should pay great attention to the impact of SGD on coastal pollution and eutrophication.

Occurrence of Diatom in the Late Quaternary Sediments of the Northeastern East Sea (Sea of Japan) and its Paleoceanographic Changes (동해 북동부해역 제 4기 후기 퇴적물의 규조 산출과 고해양학적 변화)

  • Shin, Y.N.;Ikehara, K.;Yoon, H.I.;Kim, Y.;Woo, K.S.;Khim, B.K.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 2000
  • A total of 50 diatom species and 1 subspecies belonging to 31 genera except Chaetoceros resting spores were identified in the 45 sediments subsampled from a gravity core GH98-1223 collected from the western Hokkaido Island located in the northeastern East Sea (Sea of Japan). The most dominant species is Thalassionema nitzschioides (Grunow) Hustedt, ranging 29 to 59% of the total assemblages, and most species including Denticulopsis seminae (Simonsen and Kanaya) Simonsen and Pseudoeunotia doliolus (Wallich) Grunow were less than 5% in average. Frequencies of cold-water species are generally higher than those of warm-water species and the vertical distribution of cold-water species was largely opposite to that of warm-water species in spite of ecological habitat difference. Frequency of cold-water species, D. seminae is reverse to that of P. doliolus, an indicator of the Tsushima Warm Current, which is consistent with diatom temperature value (T$_{d}$ value). The variation of T$_{d}$ values shows that the upper part of core with greater-than-average T$_{d}$ values represents postglacial warming trend. These T$_{d}$ values clearly demonstrate that the study area located in the northern part of the East Sea is gradually influenced by Tsushima Warm Current. In addition, the zig-zag variation in the lower part reflects the unstable seawater for diatom habitat. Chaetoceros resting spores indicating productivity and upwelling was 5.3 to 40%, with maximum peak at 80 cm. Chaetoceros resting spores/Chaetoceros vegetative cells, an indicator of relative amounts of biogenic material in the sediments was high at the upper 80 cm level, corresponding to the change of T$_{d}$ values. On the basis of diatom assemblages, the northeastern part of East Sea has experienced the effects of Tsushima Warm Current during the postglacial period of Holocene, which is similar to the modem climatic environment. However, the variation of P. doliolus reflects that the intensity of Tsushima Warm Current has been oscillated in the East Sea.

  • PDF

Production of Alternative Coagulant Using Waste Activated Alumina and Evaluation of Coagulation Activity (폐촉매 부산물로부터 대체 응집제 제조 및 응집성능 평가)

  • Lee, Sangwon;Moon, Taesup;Kim, Hyosoo;Choi, Myungwon;Lee, Deasun;Park, Sangtae;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-520
    • /
    • 2014
  • In this study, the production potential of alternative coagulant ($Al_2(SO_4)_3$ solution) having the identical coagulation activity with respect to the commercial coagulant was investigated. The raw material of alternative coagulant was a spent catalyst including aluminium (waste activated alumina) generated in the manufacturing process of the polymer. The alternative coagulant was produced through a series of processes: 1) intense heat and grinding, 2) chemical polymerization and substitution with $H_2SO_4$ solution, 3) dissolution and dilution and 4) settling and separation. To determine the optimal operating conditions in the lab-scale autoclave and dissolver, the content of $Al_2O_3$ in alternative coagulant was analyzed according to changes of the purity of sulfuric acid, reaction temperature, injection ratio of sulfuric acid and water in the dissolver. The results showed that the alternative coagulant having the $Al_2O_3$ content of 7~8% was produced under the optimal conditions such as $H_2SO_4$ purity of 50%, reaction temperature of $120^{\circ}C$, injection ratio of $H_2SO_4$ of 5 times and injection ratio of water of 2.3 times in dissolver. In order to evaluate the coagulation activity of the alternative coagulant, the Jar-test was conducted to the effluent in aerobic reactor. As a result, in both cases of Al/P mole of 1.5 and 2.0, the coagulation activity of the alternative coagulant was higher than that of the existing commercial coagulant. When the production costs were compared between the alternative and commercial coagulant through economic analysis, the production cost reduction of about 50% was available in the case of the alternative coagulant. In addition, it was identified that the alternative coagulant could be applied at field wastewater treatment plant without environmental problem through ecological toxicity testing.

Effects of β-glucan and Xanthan gum-based Biopolymers on Plant Growth and Competition in the Riverbank (제방 환경 조건에서 베타글루칸-잔탄검 계열 바이오폴리머가 식물 생장 및 경쟁에 미치는 영향)

  • Jeong, Hyungsoon;Shin, Haeji;Jang, Ha-young;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.208-217
    • /
    • 2020
  • A biopolymer based on microorganism-derived β-glucan and xanthan gum is being studied as a new eco-friendly material that stabilizes the riverbank slope, and also promotes vegetation growth. However, it is still inconclusive whether biopolymers have a positive effect on plant performance in the riverbanks which are subjected to various climatic factors and plant competitions. For a practical ecological evaluation of the biopolymers, their effect on plant growth promotion was studied in a natural environment. Considering the relationship between competition and plant community formation, the effects of biopolymers on competition were also investigated. For four plant species (Echinochloa crus-galli, Pennisetum alopecuroides, Leonurus japonicus, and Coreopsis lanceolata), the biopolymer effects under intra/interspecific competition were tested at the riverbank (20 m × 10 m) near Samjigyo Bridge in Damyang-gun, Jeollanam-do. A biopolymer powder was mixed with water and commercial soil following the manufacturer's recommendations. The soil mixed with the biopolymer was filled in a pot or applied to the surface of the commercial soil with a thickness of 3 cm. Across the competition treatments, the biopolymer treatment promoted root growth of the target plant species and decreased the specific leaf area. The total biomass and shoot dry weight of P. alopecuroides increased in response to the biopolymer treatment. The competition treatment decreased the total biomass and shoot dry weight compared to the case without competition. Notably, such a competitive effect was similar in all the biopolymer treatments. Thus, biopolymers, when mixed with soil, promote the growth of some plant species, but do not appear to affect the competitive ability of plants.

Change of Carbon Fixation and Economic Assessment according to the Implementation of the Sunset Provision (도시공원 일몰제에 의한 탄소고정량과 경제성 분석에 대한 연구)

  • Choi, Jiyoung;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.126-133
    • /
    • 2020
  • In accordance with the implementation of the sunset provision to cancel the designations of urban park sites that remained unexecuted for a prolonged period until 2020, the park sites in the city center, which account for 90% of the long-term unexecuted urban facilities subjected to the provision, are currently on the verge of development. The total area of the 204 park sites that will disappear in Seoul as a result of this provision is 95 ㎢; moreover, 116 of these are privately-owned. It is expected that the possible changes in the use of these park sites could result in reckless development and reduction of green space, which would ultimately affect the ecosystem. This study applied the InVEST model to calculate the changes in the fixed carbon amount before and after the implementation of the sunset provision to estimate the economic value of these changes. The study focused on Jongno-gu in Seoul because it has the most unexecuted park sites subjected to the lifting of the designation. The research findings show that the fixed carbon amount provided by the unexecuted park sites in Jongno-gu was 374,448 mg, prior to the implementation of the sunset provision; however, the amount was estimated to decrease by 18% to 305,564 mg after its execution. When calculated in terms of average value of the real carbon price, this translated into a loss of approximately 700 million won. In addition, considering the social costs including both climate change and the impact on the ecosystem, an economic loss of approximately 98 billion won was projected. This study is meaningful because its predictions are based on the estimation of fixed carbon amount according to the implementation of the sunset provision in Jongno-gu and scientifically calculates the value of ecological services provided by the parks in the city. This study can serve not only as a basis during the decision-making process for policies related to ecosystem conservation and development, but also as an evidentiary material for the compensation of privately-owned land that is designated as urban park sites and was unexecuted for a prolonged period.

Temporal Changes of Hyalessa fuscata Songs by Climate Change (기후변화에 의한 참매미 번식울음 시기 변화 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.2
    • /
    • pp.244-251
    • /
    • 2018
  • The present study aimed to identify the influence of climate change on mating songs of Cicadidae in a phenological perspective. The research sites were located in the central part of the Korean peninsula in which phenological observations by the Meteorological Office are made. The material provided by the Meteorological Office was used for long term phenological analysis. The findings demonstrated, First, the phenological monitoring of cicada is an effective index to detect ecological changes due to climate change, thus indicating the importance of long term phenological investigations for future studies. Second, the analysis on the phenological changes of H. fuscata presented a trend in which the first songs were made at increasingly earlier and later dates, respectively. The phenological data on H. fuscata and average temperatures exhibited a significant negative correlation between the initial mating song period and the average temperatures of June. Furthermore, there was also a significant negative correlation for precipitation in October with the end time and total duration of H. fuscata song. Third, in the regression analysis of the start of H. fuscata song and meteorological factors in Seoul, increasing average air temperature in spring (March to June), which includes June, was associated with an earlier start time of H. fuscata song, with calling starting approximately 3.0-4.5 days earlier per $1^{\circ}C$ increase. Fourth, in the regression analysis of the end of H. fuscata song and meteorological factors in Seoul, increased mean precipitation in October was associated with an early end time and an overall reduction in the length of the song period. The end time of song decreased by approximately 0.78 days per 1mm increase in precipitation, and the total length of the song period decreased by 0.8 days/1mm. This research is important, as it is the initial research to identify the phenological changes in H. fuscata due to climate change.