• Title/Summary/Keyword: Ecological Functional State

Search Result 20, Processing Time 0.022 seconds

Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines (안정화 처리된 폐광산 토양의 생태기능상태 평가를 위한 효소활성도 및 비소호흡유전자의 적용)

  • Park, Jae Eun;Lee, Byung-Tae;Lee, Sang Woo;Kim, Soon-Oh;Son, Ahjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.265-276
    • /
    • 2017
  • Heavy metals leaching from closed mines have been causing severe environmental problems in nearby soil ecosystems. Mine reclamation in Korea has been recently implemented based on the heavy metal immobilization (a.k.a., stabilization). Since the immobilization temporarily fixes the heavy metals to the soil matrix, the potential risk of heavy metal leaching still exists. Therefore the appropriate monitoring and the related policies are required to safeguard the soils, where all the cultivations occur. The current monitoring methods are based on either heavy metal concentration or simple toxicity test. Those methods, however, are fragmented and hence it is difficult to evaluate the site in an integrated manner. In this study, as the integrated approach, ecological functional state evaluation with a multivariate statistical tool was employed targeting physiochemical soil properties, heavy metal concentrations, microbial enzymatic activity, and arsenic respiratory reductase gene quantity. Total 60 soil samples obtained from three mines (Pungjeong, Jeomdong, Seosung) were analyzed. As a result, the stabilized layer soil and lower layer soil have shown the similar pattern in Pungjeong mine. In contrast, Jeomdong and Seosung mine have shown the similarity between the stabilized layer soil and the cover layer soil, indicating the possible contamination of the cover layer soil.

Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng

  • Xiao, Chunping;Yang, Limin;Zhang, Lianxue;Liu, Cuijing;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Background: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. Methods: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIO-LOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. Results: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. Conclusion: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

An Ecological Evaluation of Marine Algal Vegetation in the Coastal Waters of Goseong, Southern Korea (한국 남해안 고성 연안의 해조식생의 생태학적 평가)

  • Kang, Pil Joon;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.82-87
    • /
    • 2015
  • For the ecological evaluation of marine algal vegetation, flora and their communities were surveyed seasonally at Goseong, on the southern coast of Korea. A total of 102 algal species, comprising 17 green, 18 brown and 67 red algae, was identified. Representative dominant species were assessed as Ulva australis, Sargassum thunbergii, and Gelidium amansii. Of these, Ulva australis was remarkably dominant in all seasons. High biomass of the dominant species were recorded. The total seasonal biomass was highest in winter and lowest in summer. The mean biomass value was $1315.6g/m^2$ across the four seasons. Each species was classified into six functional groups, and two ecological state groups (ESG) were evaluated based on these groups. While ESG I, the late successional species group, formed only 18.6% of the algal community; ESG II, composed of opportunistic species, comprised 81.4%. This suggests that environmental stress has been continuously imposed on the marine algal vegetation of the present study area.

Flora and Community Structure of Subtidal Zone in South Jeju, Korea (한국 제주도 남부 조하대의 해조상 및 군집구조)

  • Kang, Gyu Sang;Ko, Yong Deok;Kim, Young Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.1
    • /
    • pp.273-283
    • /
    • 2015
  • This study was carried out to examine the species composition and community structure of benthic marine algae at the subtidal zones of Daepo, Wolpyeong, Wimi and Jigwido in south Jeju, Korea from March to December 2009. Total 87 species including 14 green algae, 23 brown algae, and 50 red algae were collected and identified. Among these species, 9 species were found throughout the year. The dominant species which contributed significantly to the total biomass were Ecklonia cava, Undaria pinnatifida, Peyssonnelia capensis, Cladophora wrightiana, Sargassum serratifolium, Grateloupia angusta, Codium coactum, Plocamium cartilagineum, and Sargassum macrocarpum. The average seaweed biomass was 7,578.2 g wet weight $m^{-2}$ and maximum biomass was recorded seasonally in spring ($9,627.6g\;m^{-2}$), while minimum was recorded in autumn ($5,963.0g\;m^{-2}$), by sites maximum biomass Jigwido ($12,889.9g\;m^{-2}$), while minimum was recorded in Daepo ($5,403.8g\;m^{-2}$). The seasonal and regional flora were investigated as six functional groups. A coarsely branched form was the most dominant functional group constituting from 42.9~52.8% of the total flora. Ecological state group (ESG) II, as an opportunistic species, including sheet form, filamentous form, and coarsely branched form, consisted of 31~59 species, constituting 77.5~84.9%.

Ecological responses of natural and planted forests to thinning in southeastern Korea: a chronosequence study

  • Cho, Yong-Chan;Pee, Jung-Hun;Kim, Gyeong-Soon;Koo, Bon-Yoel;Cho, Hyun-Je;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.347-355
    • /
    • 2011
  • Effects of forest thinning on community level properties have not been understood yet in Korea. We investigated regeneration patterns and trajectories after a disturbance by applying a chronosequence approach. Light availability, litter and woody debris cover, and species composition were determined for twenty 50 m line-transect samples representing a disturbance duration gradient (within 11 years). Environmental factors such as light availability and coverage of woody debris and litter changed abruptly after thinning and then returned to the pre-disturbance state. Although species richness was gained at shrub and ground layer in a limited way in both forests, cover of various functional types revealed diversity in their responses. Notably, Alnus firma stands exhibited a larger increment of cover in woody plants. Ordination analysis revealed different regeneration trajectories between natural and planted stands. Based on ordination analysis, rehabilitated stands showed movement to alternative states compared with natural ones, reflecting lower resilience to perturbation (i.e., lower stability). Our results suggest that community resilience to artificial thinning depends on properties of the dominant species. But to get more explanatory ecological information, longer-term static observations are required.

Globalization, Family life, and the Future Research Environment in Home Economics and Human Sciences

  • Jim, Moran
    • International Journal of Human Ecology
    • /
    • v.4 no.2
    • /
    • pp.89-100
    • /
    • 2003
  • This paper identifies trends in research methodology due to globalization. Context in both research and in practice and forms the key perspective for modern methodology and theory. Ecological perspectives are a necessary condition for quality global research. Human ecology researchers must advance the role of interdisciplinary and inter-functional perspectives and be open to collaborative relationships. These researchers must work in teams across disciplinary and functional boundaries. The paper discusses directions for research within the context of trends at U.S. federal agencies with applications to globalization and family life. Trends include: (a) use of diverse but rigorous methodologies; (b) recognition of the research-practice-research feedback loop;(c) primacy of context and diverse sampling; and (d) connections of research to problem solving. The terms promoted recently such as ″relationships″, ″diversity″ or ″problem-based″ are ingrained in human ecology. Key aspects for research in the next decade will be: (a) seeking diversity in sampling; (b) seeking colleagues with different perspectives; (c) incorporating meta-analysis into our work; (d) seeking meaningful results; (e) utilizing varieties of research methodologies to address our problems; and (0 understanding that practice must continually change as a function of research.

Ecological Status Evaluation using Seaweed Community Structures of Taean Coastal Areas in Korea

  • Na, Yeon Ju;Kim, Ju-Hee;Kwon, Chun Jung;Choi, Han Gil;Nam, Ki Wan
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • To evaluate the relative ecological quality of Taean coastal areas in terms of various seaweed community indices, seasonal samplings were taken at the Hakampo, Padori, Chaeseokpo, Mongsanpo and Bangpo shores from March 2006 to January 2007. A total of 105 species were identified; species richness ranged from 37~72 species spatially and from 65~75 species seasonally over the study period. Coarsely-branched seaweeds were dominant in functional group and ESG I (ecological state group I) made up 61 species (58.10%) of the identified macroalgae. The average seaweed biomass at the five study sites was $56.63g\;dry\;wt./m^2$ (range, 36.66 at Hakampo $-73.89g/m^2$ at Mongsanpo). Seaweeds were generally abundant in mid and low intertidal zone. Corallina pilulifera, Ulva australis, Sargassum thunbergii, Neorhodomela aculeata, and Symphyocladia latiuscula were the dominant species across all five study sites. Species diversity was between 1.24~2.30, while species evenness was between 0.40 and 0.61. The dominance index ranged from 0.43 at Padori to 0.64 at Mongsanpo. Given the community indices and shore descriptions, the five study sites were divided into two groups based on ecological quality: moderate (Chaeseokpo and Mongsanpo) and good (Hakampo, Padori and Bangpo).

Longitudinal and Vertical Variations of Long-term Water Quality along with Annual Patterns in Daecheong Reservoir

  • Lee, Sang-Jae;Shin, Jae-Ki;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.199-211
    • /
    • 2010
  • The objectives for this study were to evaluate spatial and temporal characteristics of water quality, based on long-term water quality monitoring data during 1993~2008. We found that physico-chemical and ecological conditions in the Daecheong Reservoir (DR) were modified by the construction of upper dam (i.e., Yongdam Reservoir). total phosphorus (TP), Secchi depth (SD), and chlorophyll-a (CHL) in the DR showed significant longitudinal decreases along the headwater-to-the downlake, indicating a large spatial variation, and this gradient was more intensified during the high-flow season (monsoon). Nutrient-rich water containing high nitrogen and phosphorus in the monsoon season (July~August) passed through the reservoir as a density current in the metalimnetic depth, and also high suspended solids increased in the metalimnetic depth, especially during the monsoon. According to the deviation analysis of Trophic State Index (TSI), >50% of TSI (CHL)-TSI (SD) and TSI (CHL)-TSI (TP) values were negatives, so that inorganic suspended solids (non-votatile solids) influenced the underwater light regime against phytoplankton growth. Also, ratios of CHL:TP after the dam construction evidently increased, compared to the values before the upper dam constructions, indicating a greater yield of phytoplankton in the unit phosphorus. Overall data showed that ecological and functional changes in Daecheong Reservoir occurred after the construction of upper dam (Yongdam Reservoir).

Use of Stable Isotope Probing in Selectively Isolating Target Microbial Community Genomes from Environmental Samples for Enhancing Resolution in Ecotoxicological Assessment

  • Park, Joonhong;Congeevaram, Shankar;Ki, Dong-Won;Tiedje, James M.
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.11-14
    • /
    • 2006
  • In this study we attempted to develop a novel genomic method to selectively isolate target functional microbial genomes from environmental samples. For this purpose, stable isotope probing (SIP) was applied in selectively isolating organic pollutant-assimilating populations. When soil microbes were fed with $^{13}C-labeled $ biphenyl, biphenyl-utilizing cells were incorporated with the heavy carbon isotope. The heavy DNA portion was successfully separated by CsCl equilibrium density gradient. And the diversity in the heavy DNA was sufficiently reduced, being suitable for the current DNA microarray techniques to detect biphenyl-utilizing populations in the soil. In addition, we proposed a new way to get more genetic information by combining this SIP method with selective metagenomic approach. The increased selective power of these new DNA isolation methods will be expected to provide a good quality of new genetic information, which, in turn, will result in development of a variety of biomarkers that may be used in assessing ecotoxicology issues including the impacts of organic hazards, and antibiotic-resistant pathogens on human and ecological systems.

Application of Recent DNA/RNA-based Techniques in Rumen Ecology

  • McSweeney, C.S.;Denman, S.E.;Wright, A.-D.G.;Yu, Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.283-294
    • /
    • 2007
  • Conventional culture-based methods of enumerating rumen microorganisms (bacteria, archaea, protozoa, and fungi) are being rapidly replaced by nucleic acid-based techniques which can be used to characterise complex microbial communities without incubation. The foundation of these techniques is 16S/18S rDNA sequence analysis which has provided a phylogenetically based classification scheme for enumeration and identification of microbial community members. While these analyses are very informative for determining the composition of the microbial community and monitoring changes in population size, they can only infer function based on these observations. The next step in functional analysis of the ecosystem is to measure how specific and, or, predominant members of the ecosystem are operating and interacting with other groups. It is also apparent that techniques which optimise the analysis of complex microbial communities rather than the detection of single organisms will need to address the issues of high throughput analysis using many primers/probes in a single sample. Nearly all the molecular ecological techniques are dependant upon the efficient extraction of high quality DNA/RNA representing the diversity of ruminal microbial communities. Recent reviews and technical manuals written on the subject of molecular microbial ecology of animals provide a broad perspective of the variety of techniques available and their potential application in the field of animal science which is beyond the scope of this treatise. This paper will focus on nucleic acid based molecular methods which have recently been developed for studying major functional groups (cellulolytic bacteria, protozoa, fungi and methanogens) of microorganisms that are important in nutritional studies, as well as, novel methods for studying microbial diversity and function from a genomics perspective.