• Title/Summary/Keyword: Eco-friendly material

Search Result 558, Processing Time 0.028 seconds

MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries

  • Liu, Xuehua;Wang, Bingning;Liu, Jine;Kong, Zhen;Xu, Binghui;Wang, Yiqian;Li, Hongliang
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850135.1-1850135.8
    • /
    • 2018
  • A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer $MoS_2$ anchored onto reduced graphene oxide (RGO) sheet (denoted as $MoS_2/RGO$) is described. It was found that single-layered or double-layered $MoS_2$ were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared $MoS_2/RGO$ composites delivered a high reversible capacity of $900mAhg^{-1}$ after 200 cycles at a current density of $200mAg^{-1}$ as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated $MoS_2$ layers deposited onto RGO sheets.

An Energy Performance Comparison of University Lecture Facilities for Energy Saving Building Design (에너지 절약형 건축물 설계를 위한 대학 강의동 형태별 에너지 성능 비교에 관한 연구)

  • Kim, Tae-Hoon;Seo, Ji-Hyo;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.105-112
    • /
    • 2018
  • Global environmental problems are growing, and the importance of buildings with high energy consumption has been emphasized. In Korea, the Ministry of Land, Transport and Maritime Affairs has been promoting the mandatory zero energy building since 2020, and guidelines related to the zero energy building have been developed. In addition, based on the "Energy-saving Design Criteria for Buildings" of the "Green Building Promotion Act" in Korea, the standards for energy-saving design are specified and the energy saving plan is written. Besides, the 'Energy-saving construction standards for eco-friendly houses' also specify insulation, machinery, equipment, and sunshade. Also, there is little consideration about the cost such as construction cost and material cost which should be considered important in the construction stage. Therefore, this study aims at analysis of building type and energy performance versus materials for energy saving building design considering energy performance in planning aspect of initial design stage. In this study, because the variables can not be neglected in this study, it is selected as the lecture facility of the 'K' university campus building which can consider the remaining factors except the passive design element as the control variable, Energy performance analysis.

Antifouling technology and sea trial verification according to surface treatment (표면 처리를 통한 친환경 방오 기술 및 실해역 평가 연구)

  • Han, Deok-Hyun;Koh, Hyeok-Jun;Jung, Hang-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.425-432
    • /
    • 2022
  • Antifouling paints that inhibit the attachment and contamination of marine organisms mainly use TBT compounds, but because of their toxic components, they cause ecosystem disturbance and environmental destruction problems, so It is necessary to research eco-friendly antifouling paints that are easy to maintain and effective antifouling technologies. In this study, physical surface treatment of silane coating and chemical antifouling technology were applied to the metal surface to secure the stability of the surface of the marine structure and inhibit the attachment and growth of marine organisms. Adhesion of marine organisms was evaluated according to the coating conditions through surface evaluation of the charged material for 15 months in the waters of the west coast of Korea. In accordance with ASTM D6990-05, antifouling properties fouling rates (FR) and physical degradation rates(PDR) were evaluated through visual inspection of the evaluation specimens. As a result of evaluating the antifouling performance of the coated surface, it was confirmed that the antifouling performance was maintained at the 50% level even after 15 months in the sample subjected to physical processing and silane coating.

Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC (고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

Trends in Canadian Dietary Supplements Enhanced with Female Hormones Required in Response to the COVID-19 Pandemic (코로나19 (COVID-19) 팬데믹에 대응하여 요구되는 여성호르몬이 강화된 캐나다산 식이 보충제의 동향)

  • Shim, Youn Young;Reaney, Martin J.T.;Lee, Hak Sung;Kim, Hye-Jin
    • Journal of the FoodService Safety
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As one of the post-COVID-19 response strategies, representative processed products derived from the natural plant material flaxseed and a dietary supplement fortified with female hormones (estrogens) were developed in Canada, an eco-friendly country was introduced. These products were: 1) flaxseed oil to help maintain cognitive and immune function, 2) Lignan50, a substance with effects similar to estrogen, a female hormone, 3) XanFlax, a thickener for confectionery/baking and egg substitute, 4) MediFlax, a constipation reliever, 5) SesaFlax, which has a fragrance similar to sesame, 6) Linusorb, which is effective for its pharmaceutical anti-inflammatory/anti-oxidation and anti-aging properties, and 7) LinuLyte, a water/electrolyte supplement containing high dietary fiber. It is expected that these dietary products will help maintain and promote health as part of a response to the COVID-19 pandemic.

Biodegradable PLA-based Biocomposites with Spent Coffee Grounds as Degradation Accelerator: Hydrolytic Degradation and Characterization Research

  • Kim, Youngsan;Lim, Daekyu;Kwon, Sangwoo;Jang, Hyunho;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • The goal of this study was to evaluate the effect of spent coffee grounds (SCG) biofiller on the morphological, thermal, mechanical and hydrolytic degradation characteristics of poly(lactic acid) (PLA) based biocomposites. The PLA-based biocomposite films were fabricated by using a high-viscosity kneading and hot-pressing machine. The PLA/SCG biocomposites were analyzed with SEM, DSC, TGA, UTM and hydrolytic degradation test. Aggregation in the PLA matrix is a result of increasing SCG concentrations. In the thermal properties, it was described that the cold crystallization temperature (Tcc) decreased as SCG was added to PLA. When SCG was incorporated to PLA, the degradation onset temperature (Tonset) revealed a diminish. The elastic modulus increased while tensile strength of PLA diminished as SCG was applied. Through hydrolysis analysis, the decomposition of PLA was accelerated with the addition of SCG. This research confirmed the possibility of devloping an eco-friendly packaging material with high degradability as SCG hasten the breakdown of PLA.

Sustainability Practices and Implications of Fashion Brands at the Vegan Fashion Week

  • Jeong, Jiwoon;Chun, Jaehoon
    • Fashion & Textile Research Journal
    • /
    • v.24 no.4
    • /
    • pp.357-371
    • /
    • 2022
  • With the expansion of the vegan fashion industry and increasing consumer interest in vegan goods, the first inaugural Vegan Fashion Week was held in LA in 2019. However, there are no studies examining the sustainability of vegan fashion brands; this study underlines the necessity to close this research gap. This study aimed to ascertain how these issues are handled by vegan fashion brands. Using the "sustainable criterion of fashion brands," we investigated the companies that participated in Vegan Fashion Week. This study analyzed the featured brands, conducted case studies, and examined each brand's sustainability strategies and procedures. Press releases, news articles, official websites, and web magazines served as raw data for this study. Analyses of individual networks were performed and brands' approaches to veganism and sustainability were evaluated; eco-friendly material, fair trade, local production, and vegan inspiration were among these techniques. Every brand had put at least one of these requirements into practice for their business, with vegan inspiration being the most popular approach. Additionally, it was discovered that vegan fashion brands deliberately employed vegan messaging that aligns with their corporate values. After its initial launch, VFW continues to advance the discourse on vegan fashion both within the industry and with the general public. The study's implications include the analysis of vegan fashion brands' ethical manufacturing, environmental practices, and overall sustainability.

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium (티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석)

  • Jeong Sik Han;Jong Yun Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

Molten Salt-Based Carbon-Neutral Critical Metal Smelting Process From Oxide Feedstocks

  • Wan-Bae Kim;Woo-Seok Choi;Gyu-Seok Lim;Vladislav E. Ri;Soo-Haeng Cho;Suk-Cheol Kwon;Hayk Nersisyan;Jong-Hyeon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.9-22
    • /
    • 2023
  • Spin-off pyroprocessing technology and inert anode materials to replace the conventional carbon-based smelting process for critical materials were introduced. Efforts to select inert anode materials through numerical analysis and selected experimental results were devised for the high-throughput reduction of oxide feedstocks. The electrochemical properties of the inert anode material were evaluated, and stable electrolysis behavior and CaCu generation were observed during molten salt recycling. Thereafter, CuTi was prepared by reacting rutile (TiO2) with CaCu in a Ti crucible. The formation of CuTi was confirmed when the concentration of CaO in the molten salt was controlled at 7.5mol%. A laboratory-scale electrorefining study was conducted using CuTi(Zr, Hf) alloys as the anodes, with a Ti electrodeposit conforming to the ASTM B299 standard recovered using a pilot-scale electrorefining device.

A study on fashion mask design trends for individual safety protection from harmful environments (유해환경으로부터 개인의 안전보호를 위한 패션 마스크 디자인 경향)

  • Dal A Lee;Chan Ho Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.4
    • /
    • pp.101-116
    • /
    • 2022
  • The purpose of this study is to understand the trends of fashion mask designs as a fashion item with characteristics to protect individual health and safety from harmful environments. To this end, the concept, the trend analysis of the domestic and foreign mask markets, the type, characteristics of functional masks, and the design trend of fashion masks were analyzed. Research methods included case studies and literaturte on mask design, fashion magazines, fashion brand websites, fashion collections, and promotional material. First, masks for personal safety were classified as protective function masks from the natural environment, functional masks by industrial groups, masks for protective functions from biohazards, and masks for protective functions from various external activities. Through this analysis, the design trends of fashion masks were analyzed. The functional orientation of structure and functionality, the environmental orientation of sustainable eco-friendly methods, the fashion orientation of individual fashion styling, and the social functional orientation tend to transmit social messages. In the harmful environment of everyday life, items such as fashion masks with functionality and fashion characteristics should be continuously studied to integrate functional and design characteristics that can contribute to the future fashion industry and the fashion market as a sense of unity and responsibility.