• Title/Summary/Keyword: Eco-friendly construction material

Search Result 131, Processing Time 0.027 seconds

A Study on the Preference of Consumers for facade Design with Brand Concepts in Apartments (브랜드 아파트의 주동 입면 디자인에 대한 소비자들의 선호도에 관한 연구)

  • Jun Han-Jong
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.3 s.56
    • /
    • pp.111-117
    • /
    • 2006
  • In the recent years, domestic construction companies have tried to differentiate their apartments using brand positioning. Respective construction companies are attracting public attention with discriminative brands. This study investigated residents' preferences focusing on apartments facade design used in marketing strategy of brand apartments. Four concepts in surveyed brand apartments are deluxe, modern, eco-friendly and comfortable. According to the related study on design factor of apartment facade, the design factors are chosen such as the overall building shape, balcony form, main color, exterior wall shape, material, main access shape, pent house design and window size. As a result of analysis, there was a difference between brand concepts and consumers' views. Therefore, apartment facade design to differentiate their own companies' brand images should consider the perception of customers.

A Study on the Characteristics of Friendly Building Techniques of Environment to Adapt to Climate (기후에 순응하는 환경-친화적 구축 기법 특성에 관한 연구)

  • Kim, Jung-Gon;Koh, Gwi-han
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.3-10
    • /
    • 2013
  • This study intends to clarify the key elements of designing low energy residential building construction by planning out residential construction in nature oriented designing method utilizing nearby environment and nature oriented energy from designing stage instead of construction of low energy residential building. Development of building technology is proportional to the development of technology that lasts already. However, what is no less important than the advancement of technology, it is the study of fundamental phenomena energy use in response to climate, reduction, such as recycling. It is possible in such a purpose, it is assumed that there is a need to study elements implementation plan in accordance with the climatic characteristics of the study. Method for controlling the condition solar radiation, sunshine, depending on the characteristics of the weather, by utilizing the convection phenomenon of nature, to maintain the air comfort in the interior space is the essence of eco-friendly construction and passive Property This is an important architectural elements to be aim. For through the analysis of this case, corresponding to the phenomenon of the features of the macro climate and micro climate due to climate change, a combination building blocks of classification placement of each, shape, structure, elevation, space, of the material appeared in various it was possible to know the construction characteristics were. As shown in each case, construction method to address climate change has been found to apply to a comprehensive analysis climatic characteristics of each region, in response to this, the construction of element each corresponding.

The Stability of Copper Slag in The Caisson Filling Material (케이슨 속채움재로서 동슬래그의 안정성 검토)

  • Noh, Ki-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1370-1376
    • /
    • 2010
  • In this study, usability and stability in the caisson filling material were reviewed that copper salg(one million tons per one-year) were produced by smelter. In order to complete these studies, chemical and physical comparing analyses were performed by sea-sand materials as to the materials suitability, After construction, the structural displacement of caisson was measured by the instrument and was examined for stability. As a result of analysis, it was determined that copper slag is eco-friendly, and can be used as recycled alternative to aggregates materials.

  • PDF

Unconfined Compressive Strength Characteristics of E.S.B. Mixed Soil Based on Soil Compactness and Curing Period (토양의 다짐도와 재령기간에 따른 E.S.B. 혼합토의 일축압축강도특성)

  • Oh, Sewook;Kim, Hongseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • This study aims to provide basic data for soil packaging differing in accordance with the strength characteristics of mixed soil, using E.S.B. (Eco Soil Binder), an eco-friendly hardening agent, based on the type of soil. The soil used in this study is weathered granite soil readily collected in and around Korea, and is classified into SW, SP and SC according to soil classification systems. The test piece for the unconfined compressive strength test has dimensions of 50 mm in diameter and 100 mm in height, with the mix ratio of E.S.B. proportional to the weight of mixed soil changed from 5% to 10%, 15%, 20%, 25%, and 30%, where compactness of 90% and 100% were applied according to each condition to analyze the unconfined compressive strength characteristics at material ages of 3, 7, and 28 days. Also, the ratio of soil packaging standard strength and unconfined compressive strength was calculated to determine the optimal E.S.B. mix ratio, whereby the field applicability of the unconfined compressive strength using the estimation equation of ACI209R was evaluated.

An Experimental Study on the Treatment of Waste Ash from the Incinerator by Alkali Soluble Acrylic Copolymer Emulsion (알칼리 용해성 아크릴계 수분산 중합체를 사용한 소각로 비산재의 처리에 관한 실험적 연구)

  • Lee, Hack-Yong;Choi, Sang-Reung;Noh, Jae-Ho;Heo, Hyung-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.111-116
    • /
    • 2010
  • The treatment of heavy metal, in the waste ash from incinerator and mine solid waste, by using alkali-soluble acrylic copolymer emulsion, that is effective in the absorption of heavy metal has been studied. It seemed that alkali soluble acrylic copolymer emulsion was very effective in the absorption of Hg, Pb, Cd and Cu in this test. Also, eco-friendly thixotropic grout, using alkali soluble acrylic copolymer emulsion, that is effective in the absorption of heavy metal, for the recycling of waste ash from incinerator and mine solid waste has been tested. It was observed that waste ash could be used as a raw material of eco-friendly thixotropic grout mortar due to the effectiveness of alkali soluble acrylic copolymer emulsion in the fixation of heavy metals including $Cr^{6+}$ from waste ash in this test.

  • PDF

A Study on the Impervious Effect of Middle Pressure Grouting Technics in using the Environmentally Friendly Impregnation Materials (친환경 주입재를 사용한 중압 그라우팅 기법의 차수효과에 관한 연구)

  • Chun, Byung-Sik;Yeoh, Yoo-Hyen;Baek, Ki-Hyun;Choi, Choon-Sik;Jung, Jong-Ju;Do, Jong-Nam;Lim, Joo-Heon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.424-433
    • /
    • 2006
  • This paper studies the field applicability of the Special Chemical grouting Method(SCM) in reinforcing and reducing permeability of the back of an existing continuous wall. SCM uses double rod which imposes intermediate pressure$(981\sim9,810kPa)$ to disturb, cut, discharge, and mix the ground. It is observed that a bulb is formed by using cement paste and environmentally friendly injection materials with minimal alkali leaching. Uniaxial compression tests, test for chemical properties and fish poison test are performed. Test results indicate that the method results in higher durability, less leaching through use of the environmentally friendly injection material, and faster mobilization of the strength. In addition, field tests confirm the formation of the bulb and the seepage cutoff wall.

  • PDF

Stabilization Mechanism for Sands Treated with Organic Acids from Laboratory Tests (유기산 재료를 이용한 사질토의 안정화 메커니즘에 관한 연구)

  • Ki, Jungsu;Yee, Eric;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • The field of ground amelioration, many construction methods have been developed more prosperously up to now, but even now, the majority focuses on the improvement of ground strength. And they could not suggest concrete solutions to the occurrence of environmental issues. To address this problem, soil improvement methods employing organic acid materials have recently been developed as eco-friendly technologies for increasing the soil strength, but details regarding the basic stabilization mechanism are not known yet. Against this background, this research was conducted to examine the soil stabilization mechanism; for this purpose, unconfined compressive strength and pH tests were conducted by using an improved eco-friendly organic acid material. The test results revealed that the samples processed with the organic acid showed a considerable increase in the unconfined compressive strength over time as compared to the strength of the samples that were processed without the organic acid. It was also confirmed that the organic acid material promoted microbial breeding and improved the soil structure by reducing the volume of the voids in the soil. Therefore, the sustainable development of this method needs to be analysed more in the future.

An Analysis of Potential Environmental Impact Reduction for Combined Sewer Overflow Project using a LCA Methodology (LCA 기법을 활용한 합류식 하수도 월류수 사업의 잠재적 환경영향 저감효과 분석)

  • Jo, Hyun-Jung;Song, Jang-Hwan;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.885-892
    • /
    • 2011
  • In this study, LCA(Life Cycle Assessment) on 'Saemangum CSO Project' was carried out to evaluate environmental impact which occurred during the construction and operation periods and the potential environmental impact reduction was analyzed by comparing production and reduction level of pollution loads. LCA was conducted out according to the procedure of ISO14040 which suggested Goal and Scope Definition, Life Cycle Inventory Analysis, Life Cycle Impact Assessment and Interpretation. In the Goal and Scope Definition, the functional unit was 1 m3 of CSO, the system boundary was construction and operation phases, and the operation period was 20 years. For the data collection and inventory analysis, input energies and materials from civil, architecture, mechanical and electric fields are collected from design sheet but the landscape architecture field is excepted. LCIA(Life Cycle Impact Assessment) was performed following the procedure of Eco-Labelling Type III under 6 categories which were resource depletion, eutrophication, global warming, ozone-layer destruction, and photochemical oxide formation. In the result of LCA, 83.4% of environmental impact occurred in the construction phase and 16.6% in the operation phase. Especially 78% of environmental impact occurred in civil works. The Global warming category showed the highest contribution level in the environmental impact categories. For the analysis on potential environmental impact reduction, the reduction and increased of environmental impact which occurred on construction and operation phases were compared. In the case of considering only the operation phase, the result of the comparison showed that 78% of environmental impact is reduced. On the other hand, when considering both the construction and operation phases, 50% of environmental impact is increase. Therefore, this study showed that eco-friendly material and construction method should be used for reduction of environmental impact during life cycle, and it is strongly necessary to develop technology and skills to reduce environmental impact such as renewable energies.

Properties of Non-Sintered Hwangtoh Mortar Using Eco-Friendly Inorganic Binding Material (친환경 무기결합재를 이용한 비소성 황토모르타르의 특성)

  • Heo, Jun-Oh;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • A number of studies on eco-friendly and healthy building materials are being conducted as modern people are becoming more conscious about health and the environment they live in. Among those materials, studies on Hwangtoh are the most prevalent but due to its strength, crack coming from drying shrinkage, and susceptibility to water, the usage of Hwangtoh is incomplete and limited to be used as a common building material. Cement concrete, considered as one of the most widely used building materials, is extensively used in construction because it is economical, easily accessible and moldable and has proper compressive strength. Due to carbon dioxide created in the process of making cement concrete, it is recognized as pollution. Accordingly, there are a lot of studies on reduction of carbon dioxide in cement concrete industry. There are increasing numbers of researches as well as developments on Hwangtoh or traditional construction materials used in South Korea to reduce the environmental problems. Therefore, this study suggests the basic features of the construction material that can replace cement concrete in the future with the non-sindtered cement mixed with non-sintering hwangtoh which is made with the furnace slag and multiple stimulants.

Evaluation of PLA Fiber Dissolution in Cement Paste and Geopolymer (시멘트 페이스트 및 지오폴리머 내의 PLA 섬유의 용해성 평가)

  • Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • Poly-Lactic Acid(PLA) fiber is an eco-friendly material and is biodegradable, so it can be utilized for manufacturing porous construction materia ls with interna l pore connection. In this study, domestic PLA fiber products(0.5mm india meter, 1.0mm in length, 10mm in length) were tested for melting at high temperatures and high alkality, and they were incorporated with FA-based geopolymer. Compressive strength was obtained through high temperature curing and alkali activator, however the complete melting of the PLA fiber was not ensured. The previous study handling PLA fiber with 0.003mm in diameter was completely dissolved, but 0.5mm and 1.0mm in diameter showed 42.5% and 33.3% of dissolution ratio, respectively. In addition, the increasing fiber volume led floating fibers during curing, which had a negative effect on its workability and solubility. Although the properties of PLA fiber may vary depending on the raw materials and production conditions, PLA fiber with 0.1mm or less diameter is recommended for porous construction material.