• Title/Summary/Keyword: Eco-friendly Product

Search Result 283, Processing Time 0.017 seconds

Study on the determination methods of the natural radionuclides (238U, 232Th) in building materials and processed living products (실내 건축자재 및 생활 가공제품 중 천연방사성핵종(238U, 232Th)의 농도 평가를 위한 분석법 연구)

  • Lee, Hyeon-Woo;Lim, Jong-Myoung;Lee, Hoon;Park, Ji-Young;Jang, Mee;Lee, Jin-Hong
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.149-160
    • /
    • 2018
  • A large number of functional living products are being produced for eco-friendly or health-promoting purposes. In the manufacturing process, such products could be adulterated with raw materials with high radioactivity, such as monazite and tourmaline. Thus, it is essential to manage raw materials and products closely related to the public living. For proper management, an accurate radioactivity data of the processed products are needed. Therefore, it is essential to develop a rapid and validated analytical method. In this study, the concentration of the radioactive $^{238}U$ and $^{232}Th$ in building materials (e.g., tile, cement, paint, wall paper, and gypsum board) and living products (e.g., health products, textiles, and minerals) were determined and compared by ED-XRF and ICP-MS. By comparing the results of both methods, we confirmed the applicability of the rapid screening and precise analysis of ED-XRF and ICP-MS. In addition, $^{238}U$ and $^{232}Th$ levels were relatively lower in building materials than in living products. Particularly, $^{232}Th$ content in 6 of 47 living products exceeded (maximum $8.2Bq{\cdot}g^{-1}$) the standard limit of $^{232}Th$ content in raw material ($1.0Bq{\cdot}g^{-1}$).

Market evaluation and marketing strategy to expand the consumption of Pleurotus nebrodensis variety 'Uram' (백령느타리 '우람'의 소비확대를 위한 시장평가와 마케팅 전략)

  • Kim, Yeon-Jin;Lee, Ja-Young;Kim, Jeong-Han;Choi, Jun-Yeong;Lee, Chae-Young;Lee, Chan-Jung;Lim, Gab-June
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.173-177
    • /
    • 2022
  • Mushroom production in Korea is concentrated on five major mushroom types. To create a new source of income for farmers, it is necessary to establish new mushroom production and marketing systems. This study was conducted to evaluate the marketability of and establish a marketing strategy for Pleurotus nebrodensis variety 'Uram'. The evaluation of distributors showed that it was necessary to cultivate mushrooms of uniform shape and size, to compensate for their low storability, and to sell them in small packages. The consumer evaluation showed that the texture of P. nebrodensis had the highest level of satisfaction for quality, but the levels of satisfaction for size and shape were low. In the consumer evaluation, as in the distributor evaluation, improvements in cultivation were found to be necessary, as the storage time is short due to a high moisture content. An evaluation of the market gave the following results regarding the marketing strategy. It was found to be necessary to consider the production of mushrooms of a uniform shape and size and sell them in small packages in the range of 150 to 300 g. The price of the mushrooms should be set using a high-end strategy for high-end sales. The mushrooms should be introduced to local food and eco-friendly stores in the early stages of production. Subsequently, if farmhouse production increases, shipments should be made to wholesale markets through a regular contract. Finally, considering that P. nebrodensis is an unfamiliar mushroom to consumers, it is necessary to promote it by increasing the accessibility of consumers through tasting events and experience groups.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.