• Title/Summary/Keyword: Eco-friendly Packaging

Search Result 115, Processing Time 0.02 seconds

Nanocellulose-based Polymer Composites with Their Properties and Applications (나노셀룰로오스 기반 고분자 복합소재의 특성 및 응용)

  • Se Hun Kim;Young Jae Kwon;Yamini Sharma;MinYoung Shon;Sangho Cho;Kyung-Youl Baek;Kie Yong Cho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.221-225
    • /
    • 2023
  • Celluloses are naturally occurring polymers that can be easily obtained from various natural sources. Nanocellulose, a form of cellulose, can be derived from regular cellulose and has unique properties that make it ideal for multiple industrial applications. Nanocellulose is a renewable, sustainable, and eco-friendly composite material with exceptional mechanical properties and thermal stability, surpassing metal and ceramic composites. As a result, nanocelluloses are being extensively studied for their potential applications, including fillers, packaging, energy, medicine, and coatings. This review aims to summarize the current research on nanocelluloses and their applications.

Quality attributes and shelf-life of freshly cut beef coated with waste feather keratin-ginger starch composite enriched with avocado peel polyphenolic-rich extract

  • Olarewaju M Oluba;Samuel I Ojeaburu;Opeyemi A Bayo-Olorunmeke;Georgina Erifeta;Sunday J Josiah
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • The utilization of coatings composed of bio-based materials in the processing and preservation of meat presents an environmentally conscious, secure, cost-effective, and superior method for prolonging the storage life of meat while also preserving its nutritional value. In this study, changes in physical, chemical, and microbiological characteristics of freshly cut beef coated with distilled water (control) and keratin-starch composites (K-S) functionalized with 0.0-, 0.2-, 0.6-, and 1.0-mL avocado peel polyphenolic-rich extract (APPPE) kept at 4℃ for 12 days were evaluated periodically at 3-day interval using standard techniques. Keratin was extracted from waste feathers, while starch was obtained from ginger rhizomes. Following a 12-day storage period, beef coated with APPPE-enriched K-S composites exhibited a significant (p<0.05) improvement in shelf life by minimizing deteriorative changes in pH and color (as determined by metmyoglobin level) in addition to inhibiting oxidative changes in lipids (as determined by TBARS level) and proteins (protein carbonyl level) in comparison to control and K-S composite without APPPE. Furthermore, microbial growth was significantly (p<0.05) suppressed in meat coated with K-S composite functionalized with APE at 0.6 and 1.0 mL compared to the control. The study suggested that APPPE-enriched K-S composite could offer an eco-friendly and safe food preservation technique for fresh meat.

Inspection System using CIELAB Color Space for the PCB Ball Pad with OSP Surface Finish (OSP 표면처리된 PCB 볼 패드용 CIELAB 색좌표 기반 검사 시스템)

  • Lee, Han-Ju;Kim, Chang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • We demonstrated an inspection system for detecting discoloration of PCB Cu ball pad with an OSP surface finish. Though the OSP surface finish has many advantages such as eco-friendly and low cost, however, it often shows a discoloration phenomenon due to a heating process. In this study, the discoloration was analyzed with device-independent CIELAB color space. First of all, the PCB samples were inspected with standard lamps and CCD camera. The measured data was processed with Labview program for detecting discoloration of Cu ball pad. From the original PCB sample image, the localized Cu ball pad image was selected to reduce the image size by the binarization and edge detection processes and it was also converted to device-independent CIELAB color space using $3{\times}3$ conversion matrix. Both acquisition time and false acceptance rate were significantly reduced with this proposed inspection system. In addition, $L^*$ and $b^*$ values of CIELAB color space were suitable for inspection of discoloration of Cu ball pad.

Study on Customer Satisfaction Performance Evaluation through e-SCM-based OMS Implementation (e-SCM 기반 OMS 구현을 통한 고객 만족 성과평가에 관한 연구)

  • Hyungdo Zun;ChiGon Kim;KyungBae Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.891-899
    • /
    • 2024
  • The Fourth Industrial Revolution is centered on a personalized demand fulfillment economy and is all about transformation and flexible processing that can deliver what customers want in real time across space and time. This paper implements the construction and operation of a packaging platform that can instantly procure the required packaging products based on real-time orders and evaluates its performance. The components of customer satisfaction are flexible and dependent on the situation which requires efficient management of enterprise operational processes based on an e-SCM platform. An OMS optimized for these conditions plays an important role in maximizing and differentiating the efficiency of a company's operations and improving its cost advantage. OMS is a system of mass customization that provides efficient MOT(Moment of Truth) logistics services to meet the eco-friendly issues of many individual customers and achieve optimized logistics operation goals to enhance repurchase intentions and sustainable business. OMS precisely analyzes the collected data to support information and decision-making related to efficiency, productivity, cost and provide accurate reports. It uses data visualization tools to express data visually and suggests directions for improvement of the operational process through statistics and prediction analysis.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.