• Title/Summary/Keyword: Eco-car

Search Result 70, Processing Time 0.028 seconds

Exploring the Factors Affecting the Adoption of Environmentally Friendly Vehicles (친환경 자동차의 수용에 영향을 미치는 요인에 관한 탐색)

  • Roh, Minjung;Lee, Han-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.375-387
    • /
    • 2018
  • This study investigates the factors that induce the early adoption of environmentally friendly vehicles. We measure the affective, cognitive, and behavioral factors influencing the early adoption intentions of car owners in three countries (the US, Germany, and Japan). We find that affective and cognitive factors are significant, but behavioral factors are only partially significant. Specifically, eco-centric values and knowledge about green technology are significant in explaining early adoption intent. However, of the behavioral factors, usage context is significant, whereas commute distance is not significant in explaining early adoption intent. Finally, between-country differences indicate that any policy to increase the adoption of environmentally friendly vehicles should be fine-tuned for each country.

Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars (자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Song, Myungsuk
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.

Tribological Properties of Ceramic Composite Friction Materials Reinforced by Carbon Fibers (탄소섬유가 혼합된 세라믹 복합재 제동마찰재의 마찰·마모 특성)

  • Goo, Byeong-Choon;Kim, Min-Soo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Because the running speed of vehicles is increasing and a shorter braking distance is required, high heat-resistant brake pads are needed to satisfy the requirements of customers and car makers. In the near future, hazardous materials such as Cu, Cr, Zn, and Sb will be restricted from use in friction materials. Ceramic composites reinforced by carbon fibers are good candidates for eco-friendly friction materials. In this study, we develop ceramic composite friction materials. The friction materials are composed of carbon fibers, Si, SiC, graphite, and phenol resin and are prepared by hot forming and heat treatment at high temperatures. The density, void ratio, and compressive strength are $1.59-1.66g/cm^3$, 16.6-20, and 70-90 MPa, respectively. Friction and wear tests are performed using a pin-on-plate-type reciprocating friction tester at 25, 100, and $200^{\circ}C$. The counterpart material is a CrMoV steel extracted from a KTX brake disc. Friction coefficient, wear amount, and wear mechanism are measured and examined. We determine that the friction coefficients depend on the temperature and the fluctuation of the friction coefficients is larger at higher temperatures. The amount of wear increases with the surface temperatures of the specimens. The tribological properties of the developed composites are similar to those of a Cu-based sintered friction material. Through this study, it is confirmed that ceramic composite materials can be used as friction materials.

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

B2B of the Automotive Industry and a Global Value Chain Policy Direction (자동차산업의 B2B와 글로벌가치사슬 정책방향)

  • Choi, Soo-Ho;Choi, Jeong-Il
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.399-409
    • /
    • 2016
  • Recent automotive market is changing rapidly with eco-friendly, fuel-efficient, unmanned autonomous. In order to grow domestic automotive industry, various companies such as IT, marketing, advertising/PR, production/manufacturing, distribution have to need the fused global value chain(GVC) production system. The purpose of this study is that Small parts makers will look for support measures to enter the GVC of global automakers. To this end, to examine the status and cooperation between vehicle manufacturers and component suppliers in GVC. Part SMEs will look for Realistic and possible support policy direction needed to enter the carmakers GVC. In order that the small parts company have to enter the GVC of the car manufacturers in the automotive industry, the small parts company should understand the nature and governance of large corporations that operate the GVC, and develop a tailored strategy.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part I : Development of Driving Cycle (전기 자동차 성능 평가를 위한 도심 주행 모드 개발 Part I : 주행 모드 개발)

  • Yang, Seong-Mo;Jeong, Nak-Tak;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;Kim, Hyun-Soo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.117-126
    • /
    • 2014
  • Recently, due to various environmental problems such as global warming, increasing of international oil prices and exhaustion of resource, a paradigm of world automobile market is rapidly changing from vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), PHEV (Plug-in Hybrid electric Vehicle) and FCEV (Fuel Cell Electric Vehicle). There are many driving cycles for performance evaluation of conventional vehicles. However there is a lack of researches on driving cycle for EV. This study is composed of part 1 and part 2. In this paper part 1, in order to develop urban driving cycle for performance evaluation of electric vehicles, Gwacheon-city patrol route of police patrol car was selected. Actual driving test was performed using EV. The driving data such as velocity, time, GPS information etc. were recorded. GUDC-EV (Gwacheon-city Urban Driving Cycle for Electric Vehicles) including road gradient was developed through the results of analyzing recorded data. Reliability of the driving cycle development method was substantiated through comparison of electricity performance. In the second part of this study, the developed driving cycle was compared to simulation result of the existing urban driving cycle. Verification of the developed driving cycle for EV performance evaluation was described.

Amendment Research of Safety Standard of Urban Railroad Vehicle for LRT (경전철 차량 안전기준 적용을 위한 개정 연구)

  • Hong, Jai-Sung;Lee, An-Ho;Cho, Bong-Kwan;Cho, Hong-Shik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.441-445
    • /
    • 2008
  • LRT is eco-friendly transportation system and can be constructed at less than half cost of subway. Therefore many local governments have planned to construct a various type of LRT and some of them were already under construction. In Para. 2 of Art. 22 of the "Enforcement Decree of Urban Railroad Act" - safety standard of urban railroad vehicle, It can't be operated if "structures and devices" don't come up to standard required to safety operation. Constructor or operator should give an order or operate according to safety standard in Art. 3 of the Safety Standard of Urban Railroad Vehicle. Safety Standard of Urban Railroad Vehicle of 2000 was reformed once to tighten fire safety standard in 2004 after subway accident in Daegue. It was entirely made for medium and large-sized electric motor car. LRT, based on driverless operation and articulated bogie, has different safety standard in signalling devices and the axle load. etc. So many institutes related LRT have required to amend. In this paper, we described features of LRT vehicle and necessity of amendment and discussed how it should be amended.

  • PDF

Analysis of Vehicle Demand by Fuel Types including Hydrogen Vehicles (수소차를 포함한 연료유형에 따른 자동차 수요 분석)

  • Yuhyeon Bak;Jee Young Kim;Yoon Lee
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.167-190
    • /
    • 2023
  • This study analyzes the potential demand for automobiles based on fuel type using survey data in Korea. The dependent variable of the model is the future desired fuel type, including gasoline, diesel, hybrid, electricity, and hydrogen. The main explanatory variables are the respondent demographic characteristics, key reasons for choosing vehicle fuel type and environmental awareness extracted via principal component analysis (PCA). Using a multinomial logit (MNL) model, we find that respondents who consider fuel economy and infrastructure increase the demand for a hybrid car but decrease the demand for electric and hydrogen vehicles. The denial-types increase the demand for gasoline (petrol) and diesel (light oil), and decrease the demand for electric vehicles. The anxiety-types increase the demand of hybrid vehicles, and decrease the demand for electric vehicles. In contrast, in the case of pro-types, the demand for diesel (light oil) hydrogen vehicles decreased.

Analyzing Intention to Use Shared E-scooters Considering Individual Travel Attitudes : The Case of Seoul Metropolitan Areas (개인 통행성향을 고려한 공유 전동킥보드 이용의향 분석: 서울시를 중심으로)

  • Lee, Yoonhee;Koo, Jahun;Choo, Sangho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Recently, e-scooters have been attracting attention as eco-friendly modes of transportation in cities due to an increasing interest in the environment. Accordingly, various studies on usage behavior are being conducted, but studies that reflect individual travel attitudes are insufficient. Therefore, this study surveyed commuters in Seoul and analyzed respondents' traveling attitudes through factor analysis. It also built a binary logistic regression model for the intention to use shared e-scooters to determine how individual travel behaviors are affected. In particular, the model results showed that age, the main mode of transportation (car), walking time to the bus stop, and four travel attitude variables (disutility of travel, preference to self-drive, internet/smartphone friendliness, and willingness to pay extra money for services) significantly affected the intention to use shared e-scooters. This study is expected to be used as basic data, with aspect to travel behavior, for the efficient operation and use of shared e-scooters in the future.

Evaluation Methodology of Greenhouse Gas On-Line Monitoring on Freeway (고속도로 구간의 온실가스 On-Line 모니터링 산정방법)

  • Lee, Soong-bong;Chang, Hyun-ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.92-104
    • /
    • 2017
  • Previous management for speed in road traffic system was aimed only to the improvement of mobility and safety. However, consideration for the aspect of environment and energy consumption efficiency was valued less than the former ones. Nevertheless, economical damage scope caused by climate change has been increasing and it is estimated that environmental value will be increased because of the change of external circumstances. In addition, policy for reducing carbon emission in transportation system was assessed as insufficient in improving the condition of traffic road since it only focused on the transition of private vehicle into public transportation and development of eco-friendly car. Now it is the time to prepare for the adaptation strategy and precaution for the increased number of private vehicle in Korea. For this, paradigm shift in traffic operation which includes the policy not only about the mobility but also about caring environment would be needed. It is needed to be able to monitor the actual amount of greenhouse gas in real time to reduce the amount of emitted greenhouse gas in the aspect of traffic management. In this research, a methodology which can build on-line greenhouse gas emission monitoring system by using real time traffic data and predicting the circumstance in next 5 minutes was suggested.