• Title/Summary/Keyword: Eco-Energy

Search Result 1,090, Processing Time 0.027 seconds

A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels (도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구)

  • Ryu, Ji-Oh;Ahn, Sang-Ho;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.517-534
    • /
    • 2021
  • Hydrogen fuel is emerging as an new energy source to replace fossil fuels in that it can solve environmental pollution problems and reduce energy imbalance and cost. Since hydrogen is eco-friendly but highly explosive, there is a high concern about fire and explosion accidents of hydrogen fueled vehicles. In particular, in semi-enclosed spaces such as tunnels, the risk is predicted to increase. Therefore, this study was conducted on the applicability of the equivalent TNT model and the numerical analysis method to evaluate the hydrogen explosion pressure in the tunnel. In comparison and review of the explosion pressure of 6 equivalent TNT models and Weyandt's experimental results, the Henrych equation was found to be the closest with a deviation of 13.6%. As a result of examining the effect of hydrogen tank capacity (52, 72, 156 L) and tunnel cross-section (40.5, 54, 72, 95 m2) on the explosion pressure using numerical analysis, the explosion pressure wave in the tunnel initially it propagates in a hemispherical shape as in open space. Furthermore, when it passes the certain distance it is transformed a plane wave and propagates at a very gradual decay rate. The Henrych equation agrees well with the numerical analysis results in the section where the explosion pressure is rapidly decreasing, but it is significantly underestimated after the explosion pressure wave is transformed into a plane wave. In case of same hydrogen tank capacity, an explosion pressure decreases as the tunnel cross-sectional area increases, and in case of the same cross-sectional area, the explosion pressure increases by about 2.5 times if the hydrogen tank capacity increases from 52 L to 156 L. As a result of the evaluation of the limiting distance affecting the human body, when a 52 L hydrogen tank explodes, the limiting distance to death was estimated to be about 3 m, and the limiting distance to serious injury was estimated to be 28.5~35.8 m.

Implications of Shared Growth of Public Enterprises: Korea Hydro & Nuclear Power Case (공공기관의 동반성장 현황과 시사점: 한국수력원자력(주) 사례를 중심으로)

  • Jeon, Young-tae;Hwang, Seung-ho;Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.4 no.2
    • /
    • pp.57-75
    • /
    • 2021
  • KHNP's shared growth activities are based on such public good. Reflecting the characteristics of a comprehensive energy company, a high-tech plant company, and a leading company for shared growth, it presents strategies to link performance indicators with its partners and implements various measures. Key tasks include maintaining the nuclear power plant ecosystem, improving management conditions for partner companies, strengthening future capabilities of the nuclear power plant industry, and supporting a virtuous cycle of regional development. This is made by reflecting the specificity of nuclear power generation as much as possible, and is designed to reflect the spirit of shared growth through win-win and cooperation in order to solve the challenges of the times while considering the characteristics as much as possible as possible. KHNP's shared growth activities can be said to be the practice of the spirit of the times(Zeitgeist). The spirit of the times given to us now is that companies should strive for sustainable growth as social air. KHNP has been striving to establish a creative and leading shared growth ecosystem. In particular, considering the positions of partners, it has been promoting continuous system improvement to establish a fair trade culture and deregulation. In addition, it has continuously discovered and implemented new customized support projects that are effective for partner companies and local communities. To this end, efforts have been made for shared growth through organic collaboration with partners and stakeholders. As detailed tasks, it also presents fostering new markets and new industries, maintaining supply chains, and emergency support for COVID-19 to maintain the nuclear power plant ecosystem. This reflects the social public good after the recent COVID-19 incident. In order to improve the management conditions of partner companies, productivity improvement, human resources enhancement, and customized funding are being implemented as detailed tasks. This is a plan to practice win-win growth with partner companies emphasized by corporate social responsibility (CSR) and ISO 26000 while being faithful to the main job. Until now, ESG management has focused on the environmental field to cope with the catastrophe of climate change. According to KHNP is presenting a public enterprise-type model in the environmental field. In order to strengthen the future capabilities of the nuclear power plant industry as a state-of-the-art energy company, it has set tasks to attract investment from partner companies, localization and new technologies R&D, and commercialization of innovative technologies. This is an effort to develop advanced nuclear power plant technology as a concrete practical measure of eco-friendly development. Meanwhile, the EU is preparing a social taxonomy to focus on the social sector, another important axis in ESG management, following the Green Taxonomy, a classification system in the environmental sector. KHNP includes enhancing local vitality, increasing income for the underprivileged, and overcoming the COVID-19 crisis as part of its shared growth activities, which is a representative social taxonomy field. The draft social taxonomy being promoted by the EU was announced in July, and the contents promoted by KHNP are consistent with this, leading the practice of social taxonomy

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Seeking a Better Place: Sustainability in the CPG Industry (추심경호적지방(追寻更好的地方): 유포장적소비품적산업적가지속발전(有包装的消费品的产业的可持续发展))

  • Rapert, Molly Inhofe;Newman, Christopher;Park, Seong-Yeon;Lee, Eun-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.199-207
    • /
    • 2010
  • For us, there is virtually no distinction between being a responsible citizen and a successful business... they are one and the same for Wal-Mart today." ~ Lee Scott, al-Mart CEO after the 2005 Katrina disaster; cited in Green to Gold (Esty and Winston 2006). Lee Scott's statement signaled a new era in sustainability as manufacturers and retailers around the globe watched the world's largest mass merchandiser confirm its intentions with respect to sustainability. For decades, the environmental movement has grown, slowly bleeding over into the corporate world. Companies have been born, products have been created, academic journals have been launched, and government initiatives have been undertaken - all in the pursuit of sustainability (Peattie and Crane 2005). While progress has been admittedly slower than some may desire, the emergence and entrance of environmentally concerned mass merchandisers has done much to help with sustainable efforts. To better understand this movement, we incorporate the perspectives of both executives and consumers involved in the consumer packaged goods (CPG) industry. This research relies on three underlying themes: (1) Conceptual and anecdotal evidence suggests that companies undertake sustainability initiatives for a plethora of reasons, (2) The number of sustainability initiatives continues to increase in the consumer packaged goods industries, and (3) That it is, therefore, necessary to explore the role that sustainability plays in the minds of consumers. In light of these themes, surveys were administered to and completed by 143 college students and 101 business executives to assess a number of variables in regards to sustainability including willingness-to-pay, behavioral intentions, attitudes, willingness-to-pay, and preferences. Survey results indicate that the top three reasons why executives believe sustainability to be important include (1) the opportunity for profitability, (2) the fulfillment of an obligation to the environment, and (3) a responsibility to customers and shareholders. College students identified the top three reasons as (1) a responsibility to the environment, (2) an indebtedness to future generations, and (3) an effective management of resources. While the rationale for supporting sustainability efforts differed between college students and executives, the executives and consumers reported similar responses for the majority of the remaining sustainability issues. Furthermore, when we asked consumers to assess the importance of six key issues (healthcare, economy, education, crime, government spending, and environment) previously identified as important to consumers by Gallup Poll, protecting the environment only ranked fourth out of the six (Carlson 2005). While all six of these issues were identified as important, the top three that emerged as most important were (1) improvements in education, (2) the economy, and (3) health care. As the pursuit and incorporation of sustainability continues to evolve, so too will the expected outcomes. New definitions of performance that reflect the social/business benefits as well as the lengthened implementation period are relevant and warranted (Ehrenfeld 2005; Hitchcock and Willard 2006). We identified three primary categories of outcomes based on a literature review of both anecdotal and conceptual expectations of sustainability: (1) improvements in constituent satisfaction, (2) differentiation opportunities, and (3) financial rewards. Within each of these categories, several specific outcomes were identified resulting in eleven different outcomes arising from sustainability initiatives. Our survey results indicate that the top five most likely outcomes for companies that pursue sustainability are: (1) green consumers will be more satisfied, (2) company image will be better, (3) corporate responsibility will be enhanced, (4) energy costs will be reduced, and (5) products will be more innovative. Additionally, to better understand the interesting intersection between the environmental "identity" of a consumer and the willingness to manifest that identity with marketplace purchases, we extended prior research developed by Experian Research (2008). Accordingly, respondents were categorized as one of four types of green consumers (Behavioral Greens, Think Greens, Potential Greens, or True Browns) to garner a better understanding of the green consumer in addition to assisting with a more effective interpretation of results. We assessed these consumers' willingness to engage in eco-friendly behavior by evaluating three options: (1) shopping at retailers that support environmental initiatives, (2) paying more for products that protect the environment, and (3) paying higher taxes so the government can support environmental initiatives. Think Greens expressed the greatest willingness to change, followed by Behavioral Greens, Potential Greens, and True Browns. These differences were all significant at p<.01. Further Conclusions and Implications We have undertaken a descriptive study which seeks to enhance our understanding of the strategic domain of sustainability. Specifically, this research fills a gap in the literature by comparing and contrasting the sustainability views of business executives and consumers with specific regard to preferences, intentions, willingness-to-pay, behavior, and attitudes. For practitioners, much can be gained from a strategic standpoint. In addition to the many results already reported, respondents also reported than willing to pay more for products that protect the environment. Other specific results indicate that female respondents consistently communicate a stronger willingness than males to pay more for these products and to shop at eco-friendly retailers. Knowing this additional information, practitioners can now have a more specific market in which to target and communicate their sustainability efforts. While this research is only an initial step towards understanding similarities and differences among practitioners and consumers regarding sustainability, it presents original findings that contribute to both practice and research. Future research should be directed toward examining other variables affecting this relationship, as well as other specific industries.

Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II) - Formaldehyde·Total Volatile Organic Compounds Emission Properties and Combustion Shapes - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(II) - 폼알데하이드·총휘발성유기화합물 방출 특성 및 연소 형상 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.580-587
    • /
    • 2017
  • Woodfiber insulation board can be considered as a one of the key material for low energy consumption, comfortable and safety construction of residential space because of its eco-friendly and high thermal insulation performance. This study was carried out to investigate the formaldehyde (HCHO) total volatile organic compounds (TVOC) emission properties and combustion shapes by flame test of low density fiberboards (LDFs) prepared with different adhesives. HCHO TVOC emission and combustion properties of LDFs prepared by melamine urea formaldehyde (MUF), phenol formaldehyde (PF), emulsified methylene diphenyl diisocyanate (eMDI) and latex resin adhesives were measured by desiccator method, 20 L chamber method, and flame test, respectively. As results, LDFs manufactured by MUF, eMDI and latex resin adhesives satisfied the Super $E_0$ grade of HCHO emission performance except PF resin. Furthermore, TVOC emission of all LDFs were satisfied the Korean indoor air quality standard (below $400{\mu}g/m^2{\cdot}h$). Especially, LDF with eMDI resin adhesive showed the lowest HCHO and TVOC emissivity, that $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$, respectively. However, eMDI emitted the small amount ($3{\mu}g/m^2{\cdot}h$) of toluene in VOC components. In the flame test, LDF with MUF resin adhesives showed the most favorable shape after flame test compare to LDFs prepared other adhesives. Based on HCHO and TVOC emission, and combustion shapes, MUF resin adhesive may be recommended to prepare LDF for insulation purpose.

The Effect of Electrode Spacing and Size on the Performance of Soil Microbial Fuel Cells (SMFC) (전극간 거리와 크기가 토양미생물연료전지의 성능에 미치는 영향)

  • Im, Seong-Won;Lee, Hye-Jeong;Chung, Jae-Woo;Ahn, Yong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.758-763
    • /
    • 2014
  • Soil microbial fuel cells (SMFC) have gained a great attention as an eco-friendly technology that can simultaneously generate electricity and treat organic pollutants from the contaminated soil. We evaluated the effect of electrode spacing and size on the performance of SMFC treating soil contaminated with organic pollutants. Maximum power density decreased with increase in electrode distance or decrease in electrode size, likely due to higher internal resistance. The maximum voltage and power density decreased from 326 mV and $19.5mW/m^2$ with 4 cm of electrode distance to 222 mV and $5.9mW/m^2$ with 9 cm of electrode distance. In case of electrode size test, the maximum voltage and power density generated was 291 mV, $0.34mW/m^3$ when both of anode and cathode area were $64cm^2$ with 4 cm of electrode distance. The maximum voltage decreased by 19~29% when the anode area decreased to $16cm^2$ while only 3~12% of voltage decreased with cathode area decrease. The maximum power density decreased by 49~68% with decreasing anode size, and by 29~47% with decreasing cathode size. These results showed that the anode area had more significant effects than the cathode area on the power generation of SMFC which has a high internal resistance due to a coexistence of soil and wastewater in the reactor.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

Behavior of Nutrients and Heavy Metals (Cu, Zn) and Applicability Evaluation from Swine Wastewater Treatment Using Microalga Scenedesmus obliquus (미세조류 Scenedesmus obliquus 영양염류와 중금속(Cu, Zn) 거동특성 및 축산 폐수 처리 적용성 평가)

  • Park, Ji-Su;Hwang, In-Sung;Oh, Eun-Ji;Yoo, Jin;Chung, Keun-Yook
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.226-232
    • /
    • 2019
  • The biological wastewater treatment is more eco-friendly and can be used effectively in wastewater for a variety of purposes than that of the conventional treatment. In particular, the wastewater treatment using microalgae in biological treatment processes has attracted great attention due to its ability to remove economically nutrients from wastewater and have many advantages as a renewable energy source. This study was investigated to establish the optimal growth conditions for microalga Scenedesmus obliquus. Additionally, the removal efficiencies of nutrients (N, P) and heavy metals (Cu, Zn) from the synthetic wastewater were evaluated. As a results, the optimal growth conditions were established at $28^{\circ}C$, pH 7, and light and dark cycle of 14 : 10 h. In the evaluation of nutrient removal efficiencies at each concentrations of 500, 1,000, 5,000, and 10,000 mg/L, the removal rates were 17.6~70% N and 8.4~34% P in the single treatment and 12.0~58.0% N and 3.0~40.3% P in the binary mixture treatment. In addition, the evaluation of heavy metal removal efficiencies at each concentrations of 10, 30 and 50 mg/L, the removal rates were 13.7~40.3% Cu and 10.0~30.0% Zn in the single treatment and 16.0~40.0% Cu and 12.0~20.0% Zn in the binary mixture treatment. Based on the results of the study, it appears that Scenedesmus obliquus can be used for the removal of nutrients and heavy metals from the swine wastewater.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Research and Consideration of Eco-friendly Radiation Shielding using CT Contrast Agent (CT 조영제를 이용한 친환경적인 방사선 차폐에 관한 연구 및 고찰)

  • Sung-Gil Kim;Yeon-Sang Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.827-833
    • /
    • 2023
  • CT(Computed Tomography) contrast agents are commonly used in general hospitals and university hospitals when taking radiographic examinations. The CT contrast medium contains a mixture of a substance called "Iodine", which absorbs radiation energy and makes it appear white in the CT image, further improving the image quality. In addition, the CT contrast agent, which moves like blood in the blood vessels, clearly differentiates it from muscle and water, so CT contrast agents are widely used in hospitals. These CT contrast agents absorb X-rays, but in order to absorb X-rays, they must have a high density or a high radiation absorption coefficient. Since the CT contrast agent is injected into the blood vessels, if the density is high, the blood vessels are strained and the patient is in shock. For this reason, it is necessary to match the density similar to that of water and always pay attention to side effects. In addition, the amount of CT contrast medium is adjusted according to the patient's body shape, and the remaining contrast medium is discarded. However, This study tried to find out the idea of recycling it as a radiation shielding material. Since the CT contrast medium has a high radiation absorption coefficient at a density similar to that of water, the amount to absorb radiation is adjusted, the amount of contrast medium and the amount of water are adjusted, and the amount of radiation absorbed is determined by mixing with water. In addition, a study was conducted to find out the result of the difference in radiation absorption in various ways by comparing the radiation quality coefficient and absorption coefficient with other substances or materials in an environmentally friendly method harmless to the human body by mixing CT contrast medium and water.