• Title/Summary/Keyword: Echo Image

Search Result 262, Processing Time 0.028 seconds

Visual census and hydro-acoustic survey of demersal fish aggregations in Ulju small scale marine ranching area (MRA), Korea (수중촬영조사법과 음향자원조사법을 활용한 울주군 연안 소규모 바다목장 해역의 어류 군집 조사)

  • Hwang, Bo-Kyu;Lee, Yoo-Won;Jo, Hyun-Su;Oh, Jeong-Kyu;Kang, Myounghee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Visual census and hydro-acoustic survey was carried out at Ulju small scale marine ranching area (MRA) to estimate demersal fish aggregations on September and November 2013. In this hydro-acoustic survey, the authors combined an image sonar with a scientific echo sounder to monitor an underwater situation and compare two acoustic data. Consequently, visual census survey was useful to estimate fish species composition for hydro-acoustic survey, because it is easy to identify aggregated fish species and overcome limits on a fishing depth and ability of an conventional fishing gear like a bottom gill-net or a fish trap at marine ranching area. Mean fish density was estimated as $0.757g/m^2$ on September and $0.219g/m^2$ on November and Fish abundance was finally calculated as 1.51ton (coefficient of variation, CV=13.1%) on September and 0.44ton (CV=47.7%) on November, respectively. Hydro-acoustic survey combined with the image sonar was useful to monitor fish aggregations and estimate fish stocks around artificial reefs at shallow coastal MRA. We were able to easily identify the underwater structures like an artificial reef and a fishing rope as well as fish aggregations from image sonar data. Therefore, the method was effective to separate unwanted echo signals in acoustic data of scientific echo sounder.

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

Evaluation of the Usefulness of PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) Technique to Reduce the Magnetic susceptibility artifact (Magnetic susceptibility artifact를 줄이기 위한 PROPELLER 확산강조영상기법의 유용성에 대한 평가)

  • Cho, Jae-Hwan
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • This study attempted to examine whether the propeller diffusion weighted image method may remove magnetic susceptibility artifacts caused by metallic materials. A comparison of occurrence rates of magnetic susceptibility artifacts in the four regions, both temporal lobes, pons, and orbit, between b = 0 and b = 1,000 s/mm2 images was made after obtaining echo-planar diffusion weighted image, propeller diffusion weighted image, and ADC map images, respectively, from a total of 20 patients who had MRI shots taken of their brain and were found to be with retained metallic foreign bodies within their teeth using a 3.0T MR scanner. In the case of echo-planar diffusion weighted image technique, the presence of metallic materials may bring in some limits on accurate diagnosis due to magnetic susceptibility artifacts, while the propeller diffusion weighted image technique where magnetic susceptibility artifacts decrease is expected to be more useful in ensuring accurate diagnosis in the clinical context.

Clinical Usefulness of MR FLAIR Image in Mild Head Injuries (경증 두부외상 환자에서 MR FLAIR 영상의 임상적 유용성)

  • Kim, Sei-Yoon;Whang, Kum;Kim, Hun-Joo;Lee, Myoung-Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.10
    • /
    • pp.1182-1186
    • /
    • 2001
  • Objectives : MR fluid-attenuated inversion recovery(FLAIR) image uses paired long inversion time and relaxation time that nulls the signal from CSF. With nulling of the CSF long echo time readout could be used to increase T2-weighting, hence improving the conspicuousness of most tissue lesions without the deleterious effects of CSF artifact seen on T2 weighted sequence. We examed the usefulness of FALIR image in the diagnosis of mild head injury. Methods : A total of 38 patients with mild head injury were examined by FLAIR image. We compared those images with CT scan and T1, T2-weighted images. Careful observation of MR images were done by two well-trained neuroradiologists. Each image was compared for conspicuousness and detectability of traumatic lesions might have shown abnormal signal intensities. The Wilcoxon signed ranks test was used for statistical evaluation. Results : The FLAIR image was significantly more sensitive than those of other images(p<0.001). T2 FFE(Fast Field Echo) image was more useful for detection of small petechial hemorrhages. Conclusion : FLAIR image is considered to be more sensitive than those of conventional MR images in the evaluation of mild head injuries.

  • PDF

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

Metal Artifact Caused by Magnetic Field Strength and Sequence on T1WI-MRI (자기공명영상에서 자장세기와 시퀀스에 따른 아티팩트 변화)

  • Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.302-308
    • /
    • 2010
  • In MRI, the Ferromagnetic artifact is generated by the metalization within in which the before inspection removal is impossible and the distortion of an image is brought. The distortion measure according to the steel for each sequence of T1 image and magnetic field intensity are analyzed and minimized method is looked into. We used SIEMENS 1.5T and 3.0T MRI for experiment equipment. First, it places within the Phantom making a metalization(Ti+Al, Stainless, Nitinol) on 1.5T, 3.0T MRI and the T1 weighted image for each Sequence is acquired. The distortion of an image and about adjacent portion change of the metal material were compared through the obtained image, we analyzed. In all metalizations, a distortion was generated and a distortion was few in particularly, and Titanium-Aluminium alloy. And the extent of a distortion was worse image in the Turbo spin Echo. The use of the Titanium-Aluminium alloy the inserted in an internal material of the metalization is recommend. and, equipment of 1.5T the patient inserting a metal in an internal is used in an inspection than equipment of 3.0T. Also, the sequence is suitable when it obtains the optimum T1 weighted image of an impersonate to use the Turbo spin Echo.

An Echo Processor for Medical Ultrasound Imaging Using a GPU with Massively Parallel Processing Architecture (병렬 처리 구조의 GPU를 이용한 의료 초음파 영상용 에코 신호 처리기)

  • Seo, Sin-Hyeok;Sohn, Hak-Yeol;Song, Tai-Kyong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.871-872
    • /
    • 2008
  • The method and results of the software implementation of a echo processor for medical ultrasound imaging using a GPU (NVIDIA G80) is presented. The echo signal processing functions are modified in a SIMD manner suitable for the GPU's massively parallel processing architecture so that the GPU's 128 ALUs are utilized nearly 100%. The preliminary result for a frame of image composed of 128 scan lines, each having 10240 16-bit samples, shows that the echo processor can be inplemented at a high rate of 30 frames per second when implemented in C, which is close to the optimized assembly codes running on the TI's TMS320C6416 DSP.

  • PDF

Echo-PIV: in vivo Flow Measurement Technique (에코 PIV: in vivo 유동 측정기법)

  • kim Hyoung-Bum;Hertzberg Jean;Shandas Robin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.26-35
    • /
    • 2005
  • The combination of ultrasound echo images with digital particle image velocimetry (DPIV) method has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window of offsetting were used to increase spatial resolution. The optimum concentration of the ultrasound contrast agent used for seeding was explored. Velocity validation tests in fully developed laminar pipe flow and pulsatile flow showed good agreement with both optical PIV measurements and the known analytic solution. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

  • PDF

The Comparative Study on the Optimized Images between Spin Echo and Turbo Spin Echo Pulse Sequences in the 1.0 T ; Aspect of T1 Weighted Image in the Brain (SE와 TSE기법의 최적영상에 관한 고찰 (Brain T1WI 측면에서))

  • Cho M.J.;Jeong H.J.;Yoo B.K.;Kim W.S.;Min K.H.;Kim S.R.;Song I.C.
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.95-103
    • /
    • 2001
  • Ⅰ. Purpose : The purpose of this study was to evaluate optimized images of Turbo Spin Echo(TSE) imaging technique in Brain MRI compared with Spin Echo(SE) technique. Ⅱ. Materials and Methods : A retrospective comparison between SE and TSE sequences was pe

  • PDF

The Qualitative Analysis of Single Shot Fast Spin Echo (SSFSE) and Maximum Intensity Projection (MIP) on Magnetic Resonance Cholangiopancreatography

  • Park, Cheol-Soo;Cho, Jae-Hwan;Lee, Hae-Kag;Dong, Kyung-Rae;Chung, Woon-Kwan;Seok, Jong-Min;Han, Man-Seok;Lee, Sun-Yeob;Goo, Eun-Hoe;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.138-144
    • /
    • 2012
  • 3-dimensional magnetic resonance cholangiopancreatography (MRCP) images reconstructed using the maximum intensity projection technique were analyzed qualitatively in patients diagnosed with pancreatobiliary diseases to determine their diagnostic utility. Single shot fast spin echo (SSFSE), fast spin echo (FSE) and 3-dimensional reconstructive images were acquired from 20 patients diagnosed histologically with pancreatobiliary diseases using a 3.0T MR scanner. According to qualitative analysis, the fast spin echo images and 3-dimensional reconstructed images of the hepatic duct, gall bladder and common bile duct had a higher signal to noise ratio (SNR) than the single shot fast spin echo images. Fast spin echo images and 3-dimensional reconstructed images did not show any differences. The contrast to noise ratio of the hepatic duct, gallbladder and common bile duct on the fast spin echo images and 3-dimensional reconstructed images was higher than that of the single shot fast spin echo images. The fast spin echo images and 3-dimensional reconstructed images showed similar quality.