• 제목/요약/키워드: Eccentric Crack

검색결과 30건 처리시간 0.024초

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

Functionally Graded Piezoelectric Strip with Eccentric Crack Under Anti-plane Shear

  • Shin, Jeong-Woo;Kim, Tae-Uk
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.854-859
    • /
    • 2003
  • In this paper, we examine the singular stresses and electric fields in a functionally graded piezoelectric ceramic strip containing an eccentric crack off the center line under anti-plane shear loading with the theory of linear piezoelectricity. It is assumed that the properties of the functionally graded piezoelectric ceramic strip vary continuously along the thickness. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained.

Eccentric Crack in a Piezoelectric Strip Under Electro-Mechanical Loading

  • Lee, Kang-Yong;Shin, Jeong-Woo;Kwon, Soon-Man
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.21-25
    • /
    • 2001
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith eccentric crack off the center line under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained, and the influences of the electric fields for piezoelectric ceramics are discussed.

  • PDF

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

응력집중의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델 (A Model Estimating the Fatigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress Concentration)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • 제12권3호
    • /
    • pp.90-100
    • /
    • 1994
  • In this study the fatigue crack growth behavior was investigated for the surface cracks in aluminum alloy A5083-O plate and its weldment. Several kinds of specimens were tested at room temperature. The Eccentric specimens(E1.0, E2.5) subjected to combined stresses(tension+bending) were tested and the welded specimens with weld toes(TOE1, TOE2) were tested in order to verify the method to consider the stress concentration such as weld toe. It was ascertained that the surface crack growth property in the weld toe could be predicted by the corrected Pang's equation proposed in this study.

  • PDF

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Performance of BMSC column with large eccentricity under natural exposure conditions

  • Ma, Haiyan;Zeng, Xiangchao;Yu, Hongfa;Yue, Peng;Zhu, Haiwei;Wu, Chengyou
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.541-550
    • /
    • 2020
  • As a new type of concrete material, basic magnesium sulfate cement concrete (BMSC) has the advantages, such as early strength, high strength, good toughness and crack resistance. However, it is unclear about the degradation of the mechanical properties of BMSC columns, which is exposed to the natural environment for several years. In order to apply this new concrete to practical engineering, six large-eccentricity compressive columns of BMSC were studied. The mechanical properties such as the crack propagation, failure morphology, lateral displacement and bearing capacity of BMSC column were studied. The results show that the degradation rate of ultimate load of BMSC column is from 6% to 7%. The degradation rate of the stiffness of the column is from 6% to 13%. With the increase of compressive strength of BMSC, the axial displacement and lateral displacement are gradually reduced. The calculation model of bearing capacity of the BMSC column under the large eccentric compression is proposed. This paper provides a reference for the application of BMSC columns in the civil engineering.

혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가 (Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads)

  • 한정우;우은택;한승호
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.693-700
    • /
    • 2015
  • 혼합모드 피로하중을 받는 균열을 갖은 CTS 시편에 대하여 균열경로 예측이론과 Tanaka 의 등가 응력확대계수식을 적용하여 피로균열진전거동을 평가하였다. 새롭게 생성되는 균열선단의 응력확대계수 산정은 ANSYS 를 이용한 유한요소법을 통해 이루어졌고, 균열경로와 균열증분은 마이크로소프트 엑셀에 프로그래밍한 균열경로예측식과 Paris 식으로 계산되었다. 균열증분으로 새롭게 생성된 균열선단의 기하학적인 정보는 엑셀의 기능을 이용해 ANSYS 의 KSCON 명령어가 인식할 수 있게 변화시켜 균열모델링을 용이하게 하였다. 반복적인 균열해석을 위해 유한요소법과 엑셀을 결합한 FECTUM(Finite Element Crack Tip Updating Method)을 개발하였다. 개발된 FECTUM 을 편측 3 점 굽힘을 통해 혼합모드의 구현이 가능한 SENB 시편(Single Edge Notched Bend Specimen)에 적용해본 결과, 균열경로는 물론 파단될 때까지의 피로하중 반복수의 차이가 3% 미만으로 잘 일치하는 모습을 보여, 개발된 기법의 타당성을 검증하였다.

편토압 및 측압이 터널거동에 미치는 영향 (Influence of eccentric load and lateral earth pressure on the tunnel behavior)

  • 안현호;서병욱;김동현;민동호;이선복;이석원
    • 한국터널지하공간학회 논문집
    • /
    • 제9권3호
    • /
    • pp.219-228
    • /
    • 2007
  • 본 연구에서는 축소모형실험을 통하여 편토압 및 측압이 터널 거동에 미치는 영향을 연구하였다. 모형실험 결과의 타당성은 수치해석을 통하여 검토하였다. 터널에 작용하는 편토압을 감소시킬 수 있는 방안으로 편향 배치된 지보구조를 제안하고 이 방안의 적용성을 검토하였다. 실험 결과, 편향 배치된 지보구조를 적용함으로서 발생되는 변위가 전체적으로 줄어들었고, 초기 균열이 발생되는 하중도 증가되었다. 또한 터널의 안정성에 크게 문제가 되는 최대 편압 수직하중 역시 증가함을 알 수 있었다. 터널에 작용하는 측압의 영향을 검토한 결과, 측압계수의 변화에 따라 변위 발생 양상 및 균열 발생 양상이 매우 변화함을 알 수 있었다. 또한, 안정성 측면에서 취약점을 나타내는 부분도 변화함을 알 수 있었다.

  • PDF

직교 이방성 탄성체에 접합된 압전 재료의 균열 전파 거동 (Crack Propagation in a Piezoelectric Layer Bonded between Two Orthotropic Layers)

  • 김철곤;권순만;이강용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.22-26
    • /
    • 2001
  • In this paper, we examine the steady state dynamic electromechanical behavior of an eccentric Yoffe crack in a piezoelectric ceramic layer bonded between two orthotropic elastic layers under the combined anti-plane mechanical shear and in-plane electrical loadings. We adopted permeable crack face condition. Numerical values on the dynamic energy release rate are obtained. The initial crack propagation orientation for PZT-5H piezoceramic is also predicted by maximum energy release rate criterion.

  • PDF