• Title/Summary/Keyword: Eastern Sea

Search Result 735, Processing Time 0.026 seconds

Effect of Arctic Oscillation and Sea Surface Temperature on Cold Surges over the Korean Peninsula (북극진동과 해수면온도가 한반도 한파에 미치는 영향)

  • Sang-Hyun An;Da-Huin Chong;Sung-Min Yeo;El Noh;Joowan Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.37-48
    • /
    • 2021
  • The cold surge is an important extreme weather in East Asia during winter, and is largely affected by behavior of the Siberian high Arctic Oscillation, which represents undulation of large-scale pressure pattern in the Arctic region. Recent studies also revealed that the synoptic low pressure system developing in the eastern boundary of the Asian continent is sensitive to sea surface temperature (SST) and plays an important role in strengthening the cold advection over the Korean Peninsula during cold surges. In this study, we analyzed the Arctic Oscillation affecting the large-scale background of cold surge in East Asia, and the sea surface temperature in the coast of East Asia is examined focusing on its role on synoptic low-inducing cold advection. For the analysis, the days with the bottom 3% of the average daily temperature, measured at five surface stations in Korean Peninsula during 49 years (1969/70-2017/18), were used for the cold surge cases. During the negative phase of the Arctic Oscillation, a strong trough is observed over East Asia, and the inflow of cold air from the polar region is strengthened, which lead to frequent cold surges. In addition, anomalously high SST in the eastern coast of Asia increases sensible and latent heat release from the ocean, therefore, it enlarges the likelihood of synoptic low-inducing extreme cold surges.

Quaternary Sea Levels Estimated from River Terraces of the Ungcheon River, Midwestern Coast of South Korea (態川川流域의 河成段丘로부터 推定되는 舊汀線高度와 그 意義, 韓國 西海岸의 第四紀 環境變化 究明에 있어서 臨海山岳地域 小河川 河成段丘 硏究의 重要性 考察)

  • Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.613-629
    • /
    • 1996
  • River terraces of glacial and interglacial periods are most developed in the Ungcheon River, midwestern coastal region of south Korea. Among these terraces, interglacial river terraces correspond to the thalassostatic terraces of eastern coastal region of Korea. Thus the former shoreline altitudes of the coastal region around Ungcheon River can be estimated by using relative heights of these interglacial thalassostatic terraces of Ungcheon River The former shoreline altitudes estimated from interglacial thalassostatic terraces of Ungcheon River are 80m, 50${\sim}$60m, 40${\sim}$45m, 30m, 25m(?), 15${\sim}$20m, and 10m. These estimates are almost identical with those of Quaternary sea levels of eastern coastal region. Among the above estimates of Ungcheon River, the former shoreline altituded of 15~20m and 10m correspond to the ancient sea levels of $\pm$18m and $\pm$10m of eastern coastal region which were injudged as the last interglacial culmination period and late warmer period of the last interglacia(5e and 5a substages of oxygen isotope stage), respectively. Therefore there is a possibility that the rest of the above former shoreline altitudes of the coastal region aroune Jngcheon River also correspond to those of eastern coastal region. On the basis of the above possibility it can be proposed that the eastern and western coastal region of Korean Peninsula have undergone tectonic uplift of equall amount since the middle Quaternary Period.

  • PDF

Impact of East Asian Summer Atmospheric Warming on PM2.5 Aerosols (동아시아 지역의 여름철 온난화가 PM2.5 에어로졸에 미치는 영향)

  • So-Jeong Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • This study analyzed the effect of warming on PM2.5 aerosol production in mid-latitude East Asia during June 2020 using PM2.5 aerosol anomalies, which were identified by incorporating meteorological and climate data into the Weather Research Forecasting model coupled with Chemistry (WRF-Chem) model. The decadal temperature change trend over a 30-year period (1991-2020) in East Asia showed that recent warming has been greater in summer than in winter. Summer warming in East Asia generated low and high pressure in the lower and upper troposphere, respectively, over China. The boundary between the lower tropospheric low and upper tropospheric high pressure sloped along the terrain from the Tibetan Plateau to Korea. The eastern China, Yellow Sea, and Korean regions experienced a convergence of warm and humid southwesterly airflows originating from the East China Sea with the development of a northwesterly Pacific high pressure. In June 2020, the highest temperatures were observed since 1973 in Korea. Meanwhile, enhanced warming in East Asia increased the production of PM2.5 aerosols that travelled long distances from eastern China to Korea. PM2.5 anomalies, which were derived solely by inputting meteorological and climatic data (1991-2020) into the WRF-Chem model and excluding emission variations, showed a positive distribution extending from eastern China to South Korea across the Yellow Sea as well as over the Pacific Northwest. Thus, the contribution of warming to PM2.5 aerosols in East Asia during June 2020 was more than 50%. In particular, PM2.5 aerosols were transported from eastern China to Korea through the Yellow Sea, where the warm and humid southwesterly airflows implied wet scavenging of sulfate but promoted nitrate production.

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method (앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

Characteristics and Variation of Size-fractionated Zooplankton Biomass in the Northern East China Sea (동중국해 북부해역의 동물플랑크톤 크기그룹별 생체량의 분포 특성 및 변화)

  • Choi, Keun-Hyung;Lee, Chang-Rae;Kang, Hyung-Ku;Kang, Kyeong-A
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • Zooplankton is an important constituent in assessing ecosystem responses to global warming. The northern East China Sea is an important ecosystem for carbon cycling with a net sink of carbon dioxide. Despite their importance as a major component in carbon cycling, relatively little is known about zooplankton biomass structure and its regulating factors in the northern East China Sea. This study examined zooplankton biomass distribution pattern in the region from multiple cruises encompassing various seasons between 2004 and 2009. Results showed that zooplankton biomass exhibits less cross-shelf gradient in general with declining biomass to the eastern shelf towards the Tsushima Current Water. Size-fractionated biomass showed that the 1.0~2.0 mm size group, mostly copepods, dominated zooplankton biomass, comprising 38 to 48% of total biomass. Smaller zooplankton (0.2~1.0 mm) biomass, consisting mainly of Paracalanus spp, a particle eating herbivorous copepod, was positively related to chlorophyll-a concentration, but no relationship was established for larger zooplankton (1.0~5.0 mm). Spatially-averaged mean total zooplankton biomass was also highly related to chlorophyll-a concentration. These result suggest that the long-term trend of zooplankton biomass increase in this region is partly accounted for by the increases of phytoplankton biomass and productivity underway in the region. However, the underlying mechanisms of how sea surface warming in the study area leads to increased phytoplankton biomass and productivity remains unclear.

Size selectivity of gill net for female snow crab, Chionoecetes opilio (자망에 대한 대게 암컷의 망목 선택성)

  • Park, Chang-Doo;An, Heui-Chun;Cho, Sam-Kwang;Bae, Bong-Seong;Park, Hae-Hoon;Bae, Jae-Hyun;Kim, Hyun-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.2
    • /
    • pp.122-127
    • /
    • 2009
  • A series of fishing experiments was carried out in the eastern coastal waters of Korea from January, 2002 to March, 2003, using gill nets of different mesh sizes (m 180, 210, 240, 270 and 300 mm) to determine the size selectivity of gill net for female snow crab, Chionoecetes opilio. The catch of experimental gears was mostly snow crab (97%), Chionoecetes opilio. The maximum carapace length (RL) of each female snow crab caught in the fishing experiments was measured. The master selection curve was estimated by applying the extended Kitahara s method. The selection curve showed that the gill nets of larger mesh size allowed more female crabs of small carapace size to escape. The optimum values of RL/m for 1.0 of retention probability was 0.563 and RL/m was estimated to be 0.249, 0.290, 0.319, 0.344 and 0.367 when the retention probability were 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.

Reproduction and distribution of Chionoecetes crabs (C. opilio and C. japonicus) in the East Sea (동해에 서식하는 대게류(Chionoecetes spp.)의 재생산 및 분포 특성)

  • Cha, Hyung Kee;Yang, Jae Hyeong;Lee, Sung Il;Yoon, Sang Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.637-644
    • /
    • 2014
  • Two Chionoecetes crabs, C. opilio and C. japonicus are primary targets of trap fisheries in the East Sea. To promote the sustainable management of these species, we investigated their reproductive biology and spatial distribution based on samples collected in standardized traps in the coastal waters of eastern Korea from September 2007 to August 2008. The estimated spawning season of C. opilio was March-April, whereas that of C. japonicus continued year-round. The estimated molting period of both species was September-October. Fecundity of C. opilio was proportional to female, size, ranging from 44,791 to 151,538 eggs, and the estimated body size at 50% sexual maturity was 63.9 mm carapace width. Egg bearing female C. opilio were mostly collected depths of 200-300 m, particularly off Hupo and Chuksan, suggesting that these areas are their major spawning grounds. In contrast, female C. japonicus were mostly collected at depths of 400-600 m, peaking at 600 m. The species-specific catch rate was higher for C. opilio above 400 m, similar at ca. 450 m, and higher for C. japonicus below 500 m. These vertical differences indicate apparent spatial segregation of the species, suggesting that spatially-explicit fisheries management plans may be necessary for mitigating conflicts between the respective crab fisheries and maintaining these crabs.

An Analysis of Aerosol Direct Radiative Forcing Using Satellite Data in East Asia During 2001-2010 (위성자료를 이용한 2001-2010년 동안의 동아시아 지역 에어로졸 직접복사강제력 분석)

  • Jeong, Ji-Hyun;Kim, Hak-Sung;Kim, Joon-Tae;Park, Yong-Pil;Choi, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1053-1062
    • /
    • 2013
  • The shortwave aerosol direct radiative forcing (SWARF) was analyzed using the Clouds and Earth's Radiant Energy System (CERES) data in the East Asian region from 2001 to 2010. In the Yellow Sea and the Korean Peninsula, located in the leeward side of China, significantly negative high SWARF at the top of atmosphere (TOA) occurs due to the long-range transport of anthropogenic (e.g. sulphate) and natural aerosols (e.g. mineral dust) from the East Asian continent. Conversely, eastern China has much higher levels of SWARF at the surface (SFC) due to anthropogenically emitted aerosol than in the Yellow Sea and the Korean Peninsula. Since the radiative forcing of aerosols in the atmosphere are different in type, aerosol types were classified into sea salt+sulphate, smoke, sulphate and dust by using satellite data. The analysis on the SWARF by the classified aerosol types indicated that sulphate occupies a predominant portion of the atmosphere in the Yellow Sea and the Korean Peninsula in the summer. In particular, the annual averages of the summer TOA SWARF increased in the Yellow Sea and the Korean Peninsula from 2001 to 2010.

Relationship of South China Sea summer monsoon with ENSO (남중국해 여름몬순과 ENSO와의 가능한 상관관계)

  • Choi, Jae-Won;Park, Ki-Jun;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.827-840
    • /
    • 2015
  • This study analyzed a correlation between South China Sea summer (June to September) monsoon (SCSSM) and the ENSO for the last 32 years (1979 to 2010). There was a correlation that the higher (lower) the SST in the $Ni{\tilde{n}}o-3.4$ region was, the weaker (stronger) the SCSSM intensity was. To identify the reason for this correlation, a difference of means between 8 El $Ni{\tilde{n}}o$ years and 8 La $Ni{\tilde{n}}a$ years (June to September). The analysis on the difference between two groups with respect to the 850 hPa stream flows showed that there were anomalous huge cyclones in the subtropical Pacific in the both hemispheres so that cold and dry anomalous northerlies were strengthened in the South China Sea relatively while anomalous westerlies were strengthened from the Maritime Continent to the off the coast of Chile. The analysis on the difference between two groups with respect to the 200 hPa stream flows showed that the opposite anomalous pressure system pattern to that in the 850 hPa stream flows were shown. In the subtropical Pacific of the both hemispheres, anomalous anticyclones existed so that anomalous easterlies were strengthened from the Maritime Continent to the equatorial central Pacific. Considering the anomalous atmospheric circulations in the upper and lower layers of the troposphere, upward airflows from the equatorial central and eastern Pacific were downward in the South China Sea and the Maritime Continent, which was a structure of anomalous atmospheric circulations. This means that the Walker Circulation was weakened and it was a typical structure of atmospheric circulations revealed in El $Ni{\tilde{n}}o$ years.

A Study on Characteristic of Diffusion of the Ocean Dumping Material (해양투기물질의 확산 특성에 관한 연구)

  • 홍도웅;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.180-185
    • /
    • 2001
  • In order to regulate the physical characteristics of an ocean dumping material in the south-eastern East Sea, the diffusion characteristics with the observation, hydraulic experiment and numerical experiment data are investigated. The main results are as follows; (1) Spying CTD observation result of the area of Jung in the East Sea, the ocean dumping area had influenced the Tsushima warm current of high temperature and salinity. Horizontal turbulent diffusivity is 1.913${\times}$10$^{7}$ $\textrm{cm}^2$/sec by drogue tracking. (2) From the experiment of settling, the initial settling velocity of each material is 1.0∼2.7 cm/sec according to the specific gravity and initial concentration. In the pycnocline, particles didn't settle under the pycnocline any more and accumulated. It is signified that calculation of the sedimentation rate of the ocean dumping material including of vertical diffustion must be regard the pycnocline in the ocean area have well-developed pycnocline. (3) Vertical turbulent diffusivity were 2.219${\times}$10$^{-8}$∼8,874${\times}$10$^{-4}$ $\textrm{cm}^2$/sec from the experiment of settling. And, the pycnocline influenced the vertical turbulent diffusivity. (4) From the result of diffusion simulation in the East Sea, the co-concentration line of 0.05 ppm and 0.1 ppm are limited at dumping area after 200 days. The constant concentration line of 0.01 ppm is distributed to the vicinity of Ulleungdo and Tokdo, but isn't distributed to the coastal area of East Sea and southern area of Jung in the East Sea.

  • PDF