• Title/Summary/Keyword: East Korean Warm Current (EKWC)

Search Result 39, Processing Time 0.024 seconds

On The Seasonal Variations Of Surface Current In The Eastern Sea Of Korea (August 1979 - April 1980)

  • Lee, Jae Chul;Chung, Whang
    • 한국해양학회지
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1981
  • The seasonal variations of surface current patterns in the Japan Sea were drawn out from the results of drift bottle experiments, current measurements and hydrographic observations during 1979∼1980. The North Korean Cold Current(NKCC) and the East Korean Warm Current(EKWC) were common features of circulation in the eastern sea of Korea. The intrusion of NKCC along the Korean coast became strong in summer(average velocity of 47.4cm/sec off Jumunjin and 23.4cm/sec near Jugbyeon) when the Tsushima Current was strong. But there was no indication of the NKCC in November 1979. Dynamic topography(August & November 1979) and satellite picture(November 1979) seemed to show the topographic steering of EKWC beginning off Janggigab. Drift bottles arrived at the Japaness coast were affected significantly by the strong Tsushima Current in summer and by the predominant northwesterlies in winter instead of weak current.

  • PDF

The Fluctuation Characteristics of the Water Mass and the Current Structure of the Southeastern Region of The East Sea

  • Cho, Kyu-Dae;Lee, Chung-Il
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.181-182
    • /
    • 2000
  • Due to the instability of the EKWC, the oceanic conditions in the East Sea are affected by the fluctuations of the moving paths of the TWC, polar fronts, and warm eddies. In particular, warm eddies play an important role in spreading the surface water of the East Sea from its southern coastal region to its interior region (Isoda, 1994). However, the fluctuation characteristics of the meandering TWC and the warm eddies in the East Sea are not yet known due to the instability of the TWC. Hideaki(1999) showed that the moving paths and features of the TWC in the coastal regions of Japan were not constant. (omitted)

  • PDF

On the Persistence of Warm Eddies in the East Sea (동해 난수성 에디의 장기간 지속에 관하여)

  • JIN, HYUNKEUN;PARK, YOUNG-GYU;PAK, GYUNDO;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.318-331
    • /
    • 2019
  • In this study, comparative analysis is performed on the long-term persisted warm eddies that were generated in 2003 (WE03) and in 2014 (WE14) over the East Sea using the HYCOM reanalysis data. The overshooting of the East Korea Warm Current (EKWC) was appeared during the formation period of those warm eddies. The warm eddies were produced in the shallow Korea Plateau region through the interaction of the EKWC and the sub-polar front. In the interior of the both warm eddies, a homogeneous water mass of about $13^{\circ}C$ and 34.1 psu were generated over the upper 150 m depth by the winter mixing. In 2004, the next year of the generation of the WE03, the amount of the inflow through the western channel of the Korea Strait was larger, while the inflow was lesser than its climatology during 2015 corresponding to the development period of the WE14. The above results suggest that the heat and salt are supplied in the warm eddies through the Tsushima Warm Current (TWC), however the amount of the inflow through the Korea Strait has negligible impact on the long-term persistency of the warm eddies. Both of the warm eddies were maintained more than 18 months near Ulleung island, while they have no common feature on the pathways. In the vicinity of the Ulleung basin, large and small eddies are continuously created due to the meandering of the EKWC. The long-term persisted warm eddies in the Ulleung Island seem to be the results of the interaction between the pre-existed eddies located south of the sub-polar front and fresh eddies induced by the meanderings of the EKWC. The conclusion is also in line with the fact that the long-term persisted warm eddies were not always created when the overshooting of the EKWC was appeared.

Eddy Distribution off the last Coast of Korea Derived from Satellite Infrared Imagery (인공위성 적외선 영상으로부터 구한 한국 동해의 와동류 분포)

  • MIN Dug-Hong;LEE Jae Chul;SHIM Tae-Bo;LEE Hyong-Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.145-156
    • /
    • 1995
  • Satellite infrared images were analyzed to study the distribution of eddies off the east coast of Korea from 1987 to 1991. Most of the eddies were filament-type and were generated near the fringe of the East Korea Warm Current (EKWC) flowing northward. Eddies having length of 20-40km and width of 10-20km were most abundant. The meso-scale eddies of 100-200km in diameter were found between Mukho and Wonsan Bay in almost all the images. There was no evidence for the consistent movement of eddies to a definite direction. The Ulleung Warm Eddy, although reported previously by the hydrographic data, could not be identified by the limited amount of infrared imagery.

  • PDF

Sea level observations in the Korean seas by remote sensing (원격탐사를 이용한 한반도 주변해역의 해면변화 및 표층순환)

  • 윤홍주;김승철;변혜경;황화정
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.339-342
    • /
    • 2003
  • Sea level variations and sea surface circulations inthe Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20-30cm and 18-24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15-20cm and 10-15cm, respectively. High variations in the West Sea was results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea was due to two branch currents (Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current (TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/sec) in the Wonsan bay on shore with NKCC, and anticyclone (0.06 cm/sec) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/set) in the northeastern area of Tushima island with TWC, respectively.

  • PDF

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

Application of a Simple Buoyancy Adjustment Model to the Japan Sea

  • SEUNG Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.311-322
    • /
    • 1988
  • Application of the simple buoyancy adjustment model, similar to Davey's (1983), indicates that buoyancies imposed locally or from outside of the basin are the major factor of the Japan Sea circulation. Within the context of the model considered, the relatively strong SW gradient of temperature, and corresponding western boundary current, in the SW region is due to the beta-effect. Kelvin waves make the western side colder and the eastern side warmer. Buoyancy input (presumably by fresh water discharge) in the NW region, so far neglected, plays an important role in strengthening the NKCC (North Korea Cold Current) and suppressing the EKWC (East Korea Warm Current) thereby breaking the conventional branching system of the Tsushima Warm Current.

  • PDF

Comparison of the Temperature Profile with the Backscattering Strength by the ADCP Data in the Southwestern Part of the East Sea (동해 남서해역에서 ADCP 자료에 의한 후방산란 강도와 수온구조와의 비교)

  • 강돈혁;나정열
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.287-295
    • /
    • 1994
  • The relationship between temperature profile and backscattering strength(S/SUB y/) computed by the ADCP data is studied in warm eddy of the southwestern parts of the East Sea of Korea in April, 1993. The result shows that S/SUB y/ with depth in N-S direction shows a symmetric shape that is almost the same as the warm eddy. But the profile of S/SUB y/ with depth in N-S direction shows a symmetric shape that is almost the same as the warm eddy. But the profile of S/SUB y/ in E-W direction shows asymmetric shape where the S/SUB y/ of the eastern parts is smaller than that of western parts. The asymmetric distribution may be due to the migration of a large number of scatterer(mainly zooplankton) carried by EKWC(East Korea Warm Current). Profile of the S/SUB y/ is similar to the temperature with depth in the ADCP data of CREAMS 93(Circulation Research of the East Asian Marginal Seas).

  • PDF

Comparison of RIAMOM and MOM in Modeling the East Sea/Japan Sea Circulation

  • Lee, Ho-Jin;Yoon, Jong-Hwan;Kawamura, Hideyuki;Kang, Hyoun-Woo
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.287-302
    • /
    • 2003
  • The seasonal variations in the circulation of the water mass in the East Sea/Japan Sea have been simulated using a free surface primitive ocean model, RIAMOM (RIAM Ocean Model), comparing the results from GFDL-MOM1 (Geophysical Fluid Dynamics Laboratory Modular Ocean Model, version 1.1, hereafter MOM) with the GDEM (Generalized Digital Environmental Model) data. Both models appear to successfully reproduce the distinct features of circulation in the East Sea/Japan Sea, such as the NB (Nearshore Branch) flowing along the Japanese coast, the EKWC (East Korean Warm Current) flowing northward along the Korean coast, and the NKCC/LCC (North Korean Cold Current/Liman Cold Current) flowing southwestward along Korean/Russian coast. RIAMOM has shown better performance, compared to MOM, in terms of the realistic simulation of the flow field in the East Sea/Japan Sea; RIAMOM has produced more rectified flows on the coastal region, for example, the narrower and stronger NKCC/LCC than MOM has. There is however obvious differences between the model results and the GDEM data in terms of the calculation of the water mass; both models have shown a tendency to overpredict temperature and underpredict salinity below 50m; more diffusive forms of thermocline and halocline have been simulated than noted in GDEM data.

Physical Characteristics and Classification of the Ulleung Warm Eddy in the East Sea (Japan Sea) (동해 울릉 난수성 소용돌이의 물리적 특성 및 분류)

  • SHIN, HONG-RYEOL;KIM, INGWON;KIM, DAEHYUK;KIM, CHEOL-HO;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.298-317
    • /
    • 2019
  • The physical characteristics of the Ulleung Warm Eddy (UWE) and its relationship with the East Korea Warm Current (EKWC) were analyzed using the CMEMS (Copernicus Marine Environment Monitoring Service) satellite altimetry data and the CTD data of the National Institute of Fisheries Science (NIFS) near the Ulleung Basin from 1993 to 2017. The distribution of the UWEs coupled with EKWC accounts for 81% of the total number of the UWEs. Only 7% of the total eddies are completely separated from the EKWC. The UWE has the characteristics of high temperature and high salinity water inside of it when it is formed from the EKWC. However, when the UWE is wintering, its internal structure changes greatly. In the winter, surface homogeneous layer of $10^{\circ}C$ and 34.2 psu inside of the UWE is produced by vertical convection from sea-surface cooling, and deepened to a maximum depth of approximately 250 m in early spring. In summer, the UWE changes into a structure with a stratified structure in the upper layer within a depth of 100 m and a homogeneous layer made in winter in the lower layer. 62 UWEs were produced for 25 years from 1993 to 2017. on average, 2.5 UWEs were formed annually, and the average life span was 259 days (approximately 8.6 months). The average size of the UWEs is 98 km in the east-west direction and 109 km in the north-south direction. The average size of UWE using satellite altimetric data is estimated to be 1~25 km smaller than that using water temperature cross-sectional data.