DOI QR코드

DOI QR Code

Comparison of RIAMOM and MOM in Modeling the East Sea/Japan Sea Circulation

  • Lee, Ho-Jin (Division of Ocean Science, Korea Maritime University) ;
  • Yoon, Jong-Hwan (DSRC, Research Institute for Applied Mechanics, Kyushu University) ;
  • Kawamura, Hideyuki (DSRC, Research Institute for Applied Mechanics, Kyushu University) ;
  • Kang, Hyoun-Woo (Coastal & Harbor Engineering Laboratory, KORDI)
  • Published : 2003.09.30

Abstract

The seasonal variations in the circulation of the water mass in the East Sea/Japan Sea have been simulated using a free surface primitive ocean model, RIAMOM (RIAM Ocean Model), comparing the results from GFDL-MOM1 (Geophysical Fluid Dynamics Laboratory Modular Ocean Model, version 1.1, hereafter MOM) with the GDEM (Generalized Digital Environmental Model) data. Both models appear to successfully reproduce the distinct features of circulation in the East Sea/Japan Sea, such as the NB (Nearshore Branch) flowing along the Japanese coast, the EKWC (East Korean Warm Current) flowing northward along the Korean coast, and the NKCC/LCC (North Korean Cold Current/Liman Cold Current) flowing southwestward along Korean/Russian coast. RIAMOM has shown better performance, compared to MOM, in terms of the realistic simulation of the flow field in the East Sea/Japan Sea; RIAMOM has produced more rectified flows on the coastal region, for example, the narrower and stronger NKCC/LCC than MOM has. There is however obvious differences between the model results and the GDEM data in terms of the calculation of the water mass; both models have shown a tendency to overpredict temperature and underpredict salinity below 50m; more diffusive forms of thermocline and halocline have been simulated than noted in GDEM data.

Keywords

References

  1. Asselin, R. 1972. Frequency filters for time integration. Mon. Weather Rev., 100, 487-490. https://doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2
  2. Aubrey, D.G., M.A. Danchenkov, and S.C. Riser. 2000. Belt of salt water in the north-western Japan Sea. p. 11-20. In: Proceeding of CREAMS '2000 International Symposium. Far Eastern Hydrometeorological Inst., Vladivostok.
  3. Blumberg, A.F. and G.L. Mellor. 1987. A description of a three-dimensional coastal ocean circulation model. p. 1-16. In: Three-Dimensional Coastal Ocean Models, ed. by N. Heaps. American Geophysical Union, Washington, D.C.
  4. Chu, P.C., J. Lan, and C. Fan. 2001 Japan Sea thermohaline structure and circulation. Part: Climatology. J. Phys. Oceanogr., 31, 244-270. https://doi.org/10.1175/1520-0485(2001)031<0244:JSTSAC>2.0.CO;2
  5. Hase, H., J.H. Yoon, and W. Koterayama. 1999. The current structure of the Tshushima Warm Current along the Japanese coast. J. Oceanogr., 55, 217-235. https://doi.org/10.1023/A:1007894030095
  6. Hirose, N., C.H. Kim, and J.H. Yoon. 1996. Heat budget in the Japan Sea. J. Oceanogr., 52, 553-574. https://doi.org/10.1007/BF02238321
  7. Hirose, N., H.C. Lee, and J.H. Yoon. 1999. Surface heat flux in the East China Sea and the Yellow Sea. J. Phys. Oceanogr., 29, 401-417. https://doi.org/10.1175/1520-0485(1999)029<0401:SHFITE>2.0.CO;2
  8. Hogan, P.J. and H.E. Hulburt. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan Sea/East Sea models with 1/8 and 1/64 resolution. J. Phys. Oceanogr., 30, 2535-2561. https://doi.org/10.1175/1520-0485(2000)030<2535:IOUOTC>2.0.CO;2
  9. Ishizaki, H. and T. Motoi. 1989. On the computational scheme of the momentum advection terms with the bottom and lateral topography. p. 191-192. In: Proceeding of Fall Meeting of Japan Oceanographical Society. (in Japanese)
  10. Ishizaki, H. and T. Motoi. 1999. Reevaluation of the Takano-Oonishi scheme for momentum advection on bottom relief in ocean models. J. Atmos. Ocean Technol., 16, 1994-2010. https://doi.org/10.1175/1520-0426(1999)016<1994:ROTTOS>2.0.CO;2
  11. Kim, C.H. 1996. A numerical experiment study on the circulation of the Japan Sea (East Sea), Japan. Ph.D. Thesis, Kyushu Univ., 151 p.
  12. Kim, C.H. and J.H. Yoon. 1996. Modeling of the wind-driven circulation in the Japan Sea using a reduced gravity model. J. Oceanogr., 52, 359-373. https://doi.org/10.1007/BF02235930
  13. Kim, C.H. and J.H. Yoon. 1999. A numerical modeling of the upper and the intermediate layer circulation in the East Sea. J. Oceanogr., 55, 327-345. https://doi.org/10.1023/A:1007837212219
  14. Kim, K. and J.Y. Chung. 1984. On the salinity minimum layer and dissolved oxygen-maximum layer in the East Sea (Japan Sea). p. 55-65. In: Ocean Hydrodynamics of the Japan and East China Sea, ed. by T. Ichiye. Elesevier, Amsterdam.
  15. Kim, K., K.Y. Kim, D.H. Min, Y. Volkov, J.H. Yoon, and M. Takematus. 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans? Geophys, Res. Lett., 28, 3293-3296. https://doi.org/10.1029/2001GL013078
  16. Kim, K.J., Y.H. Seung, and M.S. Suk. 2001. POM/MICOM inter- comparison in modeling the East Sea circulation. Ocean and Polar Res., 23(2), 161-172.
  17. Lee, H.C. 1996. A numerical simulation for the water masses and circulations of the Yellow Sea and the East China Sea, Japan. Ph.D. Thesis, Kyushu Univ., 150 p.
  18. Lee, H.C. and J.H. Yoon. 1994. On the free surface OGCM. p. 225-226. In: Proceeding of Fall Meeting of Japan Oceanographical Society.
  19. Mellor, G.L. 1991. An equation of state for numerical models of oceans and estuaries. J. Atmos. Ocean Technol., 8, 609-611. https://doi.org/10.1175/1520-0426(1991)008<0609:AEOSFN>2.0.CO;2
  20. Mesinger, F. and A. Arakawa. 1976. Numerical methods used in atmospheric models. GARP Publ. Series No. 17, Vol. 1, WMO-ICSU Joint Organizing Comm., 64 p.
  21. National Fisheries Research and Development Agency of Korea. 1986. Mean Oceanographic Charts of the Adjacent Seas of Korea. NFRDA, Busan. 186 p.
  22. NCAR. 1989. NCAR ASCII Version of ETOPO5 earth surface elevation. Data Support Section, NCAR.
  23. Pacanowski, R.C., K. Dixon, and A. Rosati. 1991. The GFDL Modular Ocean Model Users Guide, version 1.0. GFDL Ocean Group Tehc. Report No. 2.
  24. Pacanowski, R.C., K. Dixon, and A. Rosati. 1993. The GFDL Modular Ocean Model Users Guide, version 1.1. GFDL Ocean Group Tehc. Report No. 2.
  25. Senjyu, T. 1999. The Japan Sea intermediate water; its characteristics and circulation. J. Oceanogr., 55, 111-122. https://doi.org/10.1023/A:1007825609622
  26. Senjyu, T. and H. Sudo. 1994. The upper portion of Japan Sea proper water; its source and circulation as deduced from isopycnal analysis. J. Oceanogr., 50, 663-690. https://doi.org/10.1007/BF02270499
  27. Seung, Y.H. 1992. A simple model for separation of East Korean Warm Current and formation of North Korean Cold Current. J. Oceanol. Soc. Korea, 27, 189-196.
  28. Seung, Y.H. and J.H. Yoon. 1995. Robust diagnostic modeling of the Japan Sea circulation. J. Oceanogr., 51, 421-440. https://doi.org/10.1007/BF02286390
  29. Seung, Y.H. and K. Kim. 1993. A numerical modeling of the East Sea circulation. J. Oceanol. Soc. Korea, 28, 292-304.
  30. Shikama, N. 1994. Variation of volume transport in the Tsugaru Strait measured by bottom-mounted ADCP. Kaiyo Monthly, 815-818.
  31. Takikawa, T., J.H. Yoon, and K. D. Cho. 2003. Tidal currents in the Tsushima Straits estimated from ADCP data by ferryboat. J. Oceanogr., 59, 37-47. https://doi.org/10.1023/A:1022864306103
  32. Tsunogai, S., Y.W. Watanabe, K. Harada, S. Watanabe, S. Saito, and M. Nakajima. 1993. Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers. p. 105-119. In: Deep Ocean Circulation, Physical and Chemical Aspects, ed. by T. Teramoto. Elsevier, Amsterdam.
  33. Webb, D.J. 1995. The vertical advection of momentum in Bryan-Cox- Semtner ocean general circulation models. J. Phys. Oceanogr., 25, 3186-3195. https://doi.org/10.1175/1520-0485(1995)025<3186:TVAOMI>2.0.CO;2
  34. Yarchin, V.G. 1980. Study state of the Japan Sea. p. 46-61. In: Problems of Oceanography, ed. by V. Pokudov. Hydrometeoizdat, Leningrad. (In Russian)
  35. Yoon, J.H. 1991. The branching of the Tsushima Warm Current. Rep. Res. Inst. Appl. Mech. Kyshu Univ., 38, 1-21.
  36. Yoon, J.H. and H. Kawamura. 2002. The formation and circulation of the intermediate water in the Japan/East Sea. J. Oceanogr., 58, 197-211. https://doi.org/10.1023/A:1015893104998

Cited by

  1. Modeling of the branches of the Tsushima Warm Current in the Eastern Japan Sea vol.65, pp.4, 2009, https://doi.org/10.1007/s10872-009-0039-3
  2. A study of the dynamic factors of the summer-time upwelling in the Tsushima Warm Current region vol.57, pp.19-20, 2010, https://doi.org/10.1016/j.dsr2.2010.04.006
  3. Impact of Changjiang River Discharge on Sea Surface Temperature in the East China Sea vol.46, pp.6, 2016, https://doi.org/10.1175/JPO-D-15-0167.1
  4. Seasonal variation of semidiurnal internal tides in the East/Japan Sea vol.119, pp.5, 2014, https://doi.org/10.1002/2014JC009864
  5. Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation vol.34, pp.7, 2015, https://doi.org/10.1007/s13131-015-0693-1
  6. Least-Squares Estimation of Bottom Topography Using Horizontal Velocity Measurements in the Tsushima/Korea Straits vol.61, pp.4, 2005, https://doi.org/10.1007/s10872-005-0085-4
  7. Review of recent findings on the water masses and circulation in the East Sea (Sea of Japan) vol.64, pp.5, 2008, https://doi.org/10.1007/s10872-008-0061-x
  8. Operational ocean prediction experiments for smart coastal fishing vol.121, 2014, https://doi.org/10.1016/j.pocean.2013.10.008
  9. The effects of geothermal heating on the East/Japan Sea circulation vol.118, pp.4, 2013, https://doi.org/10.1002/jgrc.20161
  10. Feasible Method for the Assimilation of Satellite-Derived SST with an Ocean Circulation Model vol.22, pp.6, 2005, https://doi.org/10.1175/JTECH1744.1
  11. Comparison between a reanalyzed product by 3-dimensional variational assimilation technique and observations in the Ulleung Basin of the East/Japan Sea vol.78, pp.2, 2009, https://doi.org/10.1016/j.jmarsys.2009.02.017
  12. Numerical simulation of the migration and distribution of diamond squid (Thysanoteuthis rhombus) in the southwest Sea of Japan vol.19, pp.1, 2010, https://doi.org/10.1111/j.1365-2419.2009.00528.x
  13. Long-term decrease in phosphate concentrations in the surface layer of the southern Japan Sea vol.121, pp.10, 2016, https://doi.org/10.1002/2016JC012168
  14. Spatial and temporal changes in sea surface temperature, circulation and subpolar front of the East Sea (Japan Sea) during the last 130,000years vol.313-314, 2012, https://doi.org/10.1016/j.palaeo.2011.11.002
  15. Green’s function approach for calibrating tides in a circulation model for the East Asian marginal seas vol.68, pp.2, 2012, https://doi.org/10.1007/s10872-011-0097-1
  16. A numerical study on nutrient sources in the surface layer of the Japan Sea using a coupled physical-ecosystem model vol.112, pp.C5, 2007, https://doi.org/10.1029/2006JC003981
  17. Numerical experiment for strontium-90 and cesium-137 in the Japan Sea vol.66, pp.5, 2010, https://doi.org/10.1007/s10872-010-0053-5
  18. Distribution of Nemopilema nomurai in the southwestern Sea of Japan related to meandering of the Tsushima Warm Current vol.71, pp.3, 2015, https://doi.org/10.1007/s10872-015-0288-2
  19. Differences in Ecosystem Dynamics between the Northern and Southern Parts of the Japan Sea: Analyses with Two Ecosystem Models vol.61, pp.3, 2005, https://doi.org/10.1007/s10872-005-0051-1
  20. Large-scale transport of Cochlodinium polykrikoides blooms by the Tsushima Warm Current in the southwest Sea of Japan vol.9, pp.4, 2010, https://doi.org/10.1016/j.hal.2010.01.006
  21. Sequential forecasting of the surface and subsurface conditions in the Japan Sea vol.63, pp.3, 2007, https://doi.org/10.1007/s10872-007-0042-5
  22. Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System vol.20, pp.1, 2015, https://doi.org/10.7850/jkso.2015.20.1.1
  23. Structure of the subsurface counter current beneath the Tsushima warm current simulated by an ocean general circulation model vol.63, pp.6, 2007, https://doi.org/10.1007/s10872-007-0077-7
  24. Seasonal characteristics of the Tsushima Current in the Tsushima/Korea Strait obtained by a fine-resolution numerical model vol.27, pp.1, 2007, https://doi.org/10.1016/j.csr.2006.09.005
  25. Numerical simulation of the abrupt occurrence of strong current in the southeastern Japan Sea vol.143, 2017, https://doi.org/10.1016/j.csr.2016.07.005
  26. Inverse estimation of empirical parameters used in a regional ocean circulation model vol.67, pp.3, 2011, https://doi.org/10.1007/s10872-011-0041-4
  27. Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation vol.20, pp.3, 2015, https://doi.org/10.7850/jkso.2015.20.3.119
  28. Tidal Effects on Intermediate Waters: A Case Study in the East/Japan Sea vol.41, pp.1, 2011, https://doi.org/10.1175/2010JPO4510.1
  29. Biological modulation in the seasonal variation of dissolved oxygen concentration in the upper Japan Sea pp.1573-868X, 2018, https://doi.org/10.1007/s10872-018-0497-6