• 제목/요약/키워드: East China Sea.

검색결과 663건 처리시간 0.028초

한.중.일 다자간 어업협력체 구성방안 연구 (A Study on the Construction of the Multiple Fishery Cooperation System Between Korea, China and Japan)

  • 심호진
    • 수산경영론집
    • /
    • 제39권2호
    • /
    • pp.81-108
    • /
    • 2008
  • Since the declaration made by UN Convention on the Law of the Sea on EEZs, The open seas of Northeast Asia, considerd as a convention area, needed new agreements in conformity with the changes brought by the introduction of the Exclusive Economic Zone(EEZ) system. The Contracting Parties of these agreements set up their own EEZs, which extend certain ranges from their baselines, Fishing in the other party's EEZ is done based on mutual agreements, which take into account traditional fishing activity in the zones. Seperate fishries management systems, in accordance with the relevant legal status of the waters, are applied to individual overlapping areas: Middle Zone in the Bast Sea and the waters south of jeju Island, Interim Measure Zone in the Yellow Sea and East China Sea, and the Transitional Zone in the Yellow Sea. They decided to conclude fisheries agreements as the provisional agreement under Article 74(3) of the UN Convention before the delimitations of the EEZs to avoid the territorial disputes. China and Japan concluded the Fishries Agreement in the November 1997, allowing each coastal State 52 mile EEZ. it was followed by Korea and Japan in September 1998, reaching a final compromise. And also Korea and China came to a satisfactary settlement in November 1998. Fisheries agreements have been established between the three North-east Asian States, the agreement are all bilateral. That implies inefficient resource management on the overlapping waters of the three states, especially on the East China Sea. The Korea-Japan Fisheries Agreement and the China-Japan Fishery Agreement worked as governing rules in the North-east Asian seas before the establishment of EEZs (Exclusive Economic Zones). However the conclusion of the bilateral fishery agreements, Korea China and Japan have developed EEZs, and these three countries have competed for the exploitation of fisheries resources. Therefore, the issue of fisheries resource management was no longer a single countries' problem and emerged as a common issue facing these three countries. In recognition of the above-mentioned problem, it is needed for the construction of cooperative System fishery management in the North-east Asian seas. Therefore, cooperative measures should be establishied. The final goal of the construction of fisheries management cooperative system is to establish sustainable fisheries in the North-east Asian seas. However, there is a big difference in fisheries management tools, fishing gear, exploitation rate of species, etc. This implies that a careful approach should be taken in order to achieve the cooperative fisheries management among Korea, China and Japan. conclusionly, the Governments of Korea, China and Japan should complement three bilateral agreemens, and which they prepares to 'Fisheries Resource Restore Program' Between Korea, China and Japan in the adjacent waters south of Jeju Island.

  • PDF

Calibration and validation of the level 2 data of the Korean OSMI ocean color satellite

  • Suh, Y.S.;Jang, L.H.;Lee, N.K.;Lim, H.S.;Kim, Y.S.;Ahn, Y.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.703-705
    • /
    • 2003
  • A comparison was made between the chlorophyll a and suspended solid (SS) retrievals from OSMI and SeaWiFS sensor to chlorophyll a and SS values determined with the standard method during the NFRDI's research cruises. The percentage of organic and inorganic materials from the SS was calculated to study the contribution of turbid water in the northern part of the East China Sea. The open sea waters in the Kuroshio regions of the East China Sea showed relatively higher concentration of volatile SS. However, towards the northwestern part of the East China Sea, the situation became much more optically different with the non-volatile SS from the Yangtze river and the sea bottom sources in the sea in winter and spring seasons. Furthermore, in order to indirectly detect low salinity water with high turbidity, which related to the Yangtze river using remote sensed data from the satellites, a comparison between the results of the band ratio(nLw 490nm/nLw 555nm) of SeaWiFS (OSMI) and the distribution of low salinity around the Jeju Island was presented.

  • PDF

동지나해(東支那海)의 1978년(年) 하계(夏季) 태풍해일(颱風海溢)의 산정(算定) (Computation of the Typhoon Surges of July-August 1978 in the East China Sea)

  • 최병호
    • 한국해양학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 1985
  • 1978年 夏季의 두 颱風海이의 動的인 狀況이 黃海와 東支那海의 垂直積分된 有限차분모델에 의해 檢討되었다. 모델에 依해 算定된 해이고는 우리 나라 西海岸 의 主要檢潮所(仁川, 群山, 木浦, 濟州, 麗水港)에서의 觀測結果와 比較檢討되었다. 初期結果가 提示되고 討議되었다. 이 해이 硏究는 東支那海의 Seasat 衛星 高度計 資料의 更正作業을 하는 過程에서 遂行되었다.

  • PDF

지구시스템 모형을 이용한 21세기 동중국해와 남해의 수온과 일차생산 변화 평가 (Assessment of Changes in Temperature and Primary Production over the East China Sea and South Sea during the 21st Century using an Earth System Model)

  • 박영규;최상화;김선동;김철호
    • Ocean and Polar Research
    • /
    • 제34권2호
    • /
    • pp.229-237
    • /
    • 2012
  • Using results from an Earth System model, we investigated change in primary production in the East China Sea, under a global warming scenario. As global warming progresses, the vertical stratification of water becomes stronger, and nutrient supply from the lower part to the upper part is reduced. Consequently, so is the primary production. In addition to the warming trend, there is strong decadal to interdecadal scale variability, and it takes a few decades before the warming trend surpasses natural variability. Thus, it would be very hard to investigate the global warming trend using data of several years' length.

동중국해 북부해역에서 봄과 여름동안 영양염과 엽록소의 분포특성 (The Distribution of Nutrients and Chlorophyll in the Northern East China Sea during the Spring and Summer)

  • 김동선;심정희;이정아;강영철
    • Ocean and Polar Research
    • /
    • 제27권3호
    • /
    • pp.251-263
    • /
    • 2005
  • In order to study changes in the marine ecosystem of the East China Sea derived by the global warming and construction of the Three Gorges Dam in the middle of the Changjiang, temperature, salinity, nutrients, and chlorophyll-a were studied intensively in the northern part of the East China Sea during the summer of 2003 and spring of 2004. According to the previous studies, the upwelling of the Kuroshio Current and the Changjiang resulted in a major inputs of nutrients in the East China Sea, but these two inputs may not contribute gently to a build up of nutrients in the northern East China Sea. In spring, relatively high concentrations of nitrates and phosphates were observed in the western part of the study area, which resulted from the supply of high concentrations of nutrients showing up in the surface waters as a result of vertical mixing from the ocean bottom. The concentrations of nitrates and phosphates observed in summer were lower than those in spring, since the surface waters were well stratified by the larger discharge of fresh water from the Changjiang in summer. The surface nitrate/phosphate ratios ranged from 1.3 to 16 in spring and from 1.1 to 15 in summer and were lower than the Redfield ratio of 16, indicating that the growth of phytoplankton is limited by nitrogen. This results are contrary to the previous results, in which the growth of phytoplankton was limited by phosphate in the East China Sea. The reason for this contrary result is that most nutrients in the surface waters are supplied by vertical mixing from the bottom waters with low nitrate/phosphate ratios, not directly influenced by the Changjiang with high nitrate/phosphate ratios. The depth-integrated chlorophyll observed in summer was similar to the previous results, but those measured in spring were almost twice as high as those found in previous results. The depth-integrated chlorophyll in spring was higher than that of summer, which results from high concentrations of nitrates and phosphates in the surface waters in spring due to active vertical mixing.

동중국해 북부해역에서 부유물질과 입자성유기탄소의 분포 특성 및 연간 변화 (The Distribution and Interannual Variation in Suspended Solid and Particulate Organic Carbon in the Northern East China Sea)

  • 김동선;최상화;김경희;김철호
    • Ocean and Polar Research
    • /
    • 제31권2호
    • /
    • pp.219-229
    • /
    • 2009
  • In order to establish annual variations in the marine ecosystem of the East China Sea, suspended solids (SSs) and particulate organic carbon (POC) were extensively investigated in the northern part of the East China Sea from August 2003 to April 2008. Surface SS concentrations showed large spatial variations in spring and fall, but not in summer. Surface SS concentrations in spring were lower than those in summer and fall. In summer, SSs discharged from Changjiang were mostly deposited in the coastal areas and did not reach our study area which was located about 260 km from the river mouth. High SS concentrations were observed near the bottom, which resulted from resuspension of bottom sediments by the bottom currents. Surface POC concentrations did not exhibited large seasonal variations. Phytoplankton biomass was a main factor controlling surface POC concentrations. POC/chlorophyll ratios showed large seasonal variations, with maximum numbers in summer. POC/PON ratios were higher in summer than the Redefied ratio (6.6), while they were lower in spring and fall. In summer, higher POC/chlorophyll and POC/PON ratios were probably attributed to the high phytoplankton mortality caused by nutrient depletion in surface waters.

동지나해 저서어업자원의 조사연구 (Acoustic-Trawl Surveys for Demersal Fisheries Resources in the East China Sea)

  • 윤갑동
    • 수산해양기술연구
    • /
    • 제29권3호
    • /
    • pp.183-190
    • /
    • 1993
  • A cooperative Korea-Japan investigation for the demersal fisheries resources of the East China Sea carried out by using the training ship Oshoro Maru belong to Hok-kaido University, Japan, during 1-8 November, 1991. The research vessel sampled 15 stations with demersal trawls on the East China Sea, and 1,364 nautical miles of track line were surveyed hydroacoustically. The hydroacoustic observations were taken with a scientific echo sounder operating at two frequencies of 25 kHz and 100 kHz, and a microcomputer-based echo integrator. Fish samples were collected by demersal trawling, and temperature, salinity and dissolved oxygen were measured with a CTD system. The target strength of fish school was estimated from the relationship between mean scattering strength and catches caught by demersal trawling. The results obtained can be summarized as follows: 1. The mean backscattering strength for 15 layers occupied by demersal trawls at 25 kHz ranged from -70.4 dB to -59.1 dB. Then the catch per one hour ranged from 8.2 to 587.5 kg/hour. 2. The mean backscattering strength for the entire layer between transducer and seabed in the survey area of the East China Sea at 25 kHz and 100 kHz were -68.0 dB and -73.1 dB, respectively. 3. The mean fish-school target strength per one kilogram at 25 kHz and 100 kHz were -28.3 dB/kg, and -30.4 dB/kg, respectively.

  • PDF

저층트롤을 이용한 동중국해 해역의 계절별 수산자원 현황 (Understanding the seasonal status of fisheries resource in the East China Sea by using bottom trawl)

  • 신형호;이정관;박근창;임병권;황두진;이경훈
    • 수산해양기술연구
    • /
    • 제59권3호
    • /
    • pp.231-241
    • /
    • 2023
  • This study was investigated in order to find composition and density of fisheries resource using bottom trawl in April, July, August, and November 2022 in the East China Sea. The average density of fisheries resource was estimated using the swept area method. As a result, 35 species were collected from the East China Sea. These included 21 fishes, six crustaceans, six cephalopods and two echinoderms. Seasonally, the average density of crustacean individuals per unit area were highest in November (692.1 inds./km2), while cephalopod individuals per unit area were highest in August (39.4 inds./km2). The average density of fish individuals per unit area were highest in August at 355.0 (inds./km2).

해양수색 위성자료의 검.보정 (Calibration and Validation of Ocean Color Satellite Imagery)

  • 서영상;;장이현;이삼근;유신재
    • 한국환경과학회지
    • /
    • 제10권6호
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

황해 및 동중국해의 수질예측과 응답성 평가 (Water Quality Modeling and Response Assessment in the Yellow Sea and the East China Sea)

  • 이대인
    • 환경영향평가
    • /
    • 제21권3호
    • /
    • pp.445-460
    • /
    • 2012
  • In order to evaluate and predict the environmental impact of the low-trophic-level ecosystem to environmental changes in the Yellow Sea and the East China Sea, an ecological modelling study was undertaken. Simulation results of average distribution patterns and concentrations of water quality factors during the summer by the model were acceptable. Phytoplankton and remineralization rate of organic matter were very important parameters by a sensitivity analysis. Water quality factors showed high values in the estuary of the Yangtze River and in the West and South Sea of Korea and low values in the central area of the Yellow Sea. There is a plume of high values, especially nutrients, off the mouth of the Yangtze that expands or contracts with changes in the discharge strength. Characteristics of responses of water quality factors vary for different scenarios of environmental change, such as land-based pollution sources and atmospheric forcing. It is suggested that changes of light intensity, discharges of input sources, and wind play an important role in the marine ecosystem.