• Title/Summary/Keyword: East Asian monsoon

Search Result 74, Processing Time 0.027 seconds

Characteristics of 1994-95 Summer Monsoon Inferred from SSM/I-derived Water Budget Parameters (SSM/I 대기물수지 변수를 이용한 1994-95년 하계 몬순의 특성 연구)

  • 손병주;김도형;김혜영;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • Microwave brightness temperature data measured from the Special Sensor Microwave/Imager (SSM/I) aboard Defense Meteorological Satellite Program (DMSP) satellite are used to investigate the characteristics of hydrological features of the East Asian summer monsoon during 1994 and 1995. The analyzed parameters include total columnar water vapor, cloud liquid water, and rain rate. These are estimated from SSM/I brightness temperature data for the two summer seasons (June, July, August) of 1994 and 1995 over the Asian monsoon region (0$^{\circ}$-60$^{\circ}$N, 45$^{\circ}$-180$^{\circ}$E). Results indicate that there are periodic westward movement of dry air over the 20$^{\circ}$-30$^{\circ}$N latitudinal belt with about 20-30 day period. Considering that the location of the North Pacific high is closely linked to the evolution of the monsoon activities over East Asia, the westward expansion of the North Pacific high may be the one important element modulating the monsoon intensity.

Boundary Layer Ozone Transport from Eastern China to Southern Japan: Pollution Episodes Observed during Monsoon Onset in 2004

  • Pochanart, Pakpong;Wang, Zifa;Akimoto, Hajime
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.48-56
    • /
    • 2015
  • The trajectory analysis of boundary layer ozone data at four regional sites in the East Asian outflow regions in Japan was carried out together with boundary layer ozone data observed at Mt. Tai and Mt. Huang in the source region of central eastern China during the monsoon onset in May-June 2003 and 2004. At all sites, the influences of anthropogenic emissions from East Asia have been found. During May and June 2004, the evidences of direct pollution transport from central eastern China to Hedo, an outflow site in Okinawa Island were observed. Ozone mixing ratios associated with air masses from central eastern China averaged 45 ppb while those associated with clean air masses from the Pacific were only 14 ppb, which resulted in averaged 31 ppb increase of ozone mixing ratios during the pollution episodes from central eastern China at Cape Hedo. Using transport time analysis and averaging all ozone episodes transported from central eastern China, the ozone dilution rate of 5.4 ppb per day was roughly estimated during air masses transported from source to outflow regions at Hedo. In the regions nearby Japanese mainland, however ozone increases by long-range transports were more related to both domestic and East Asian sources as a whole.

Infouences of the Asian Monsoon and the Kuroshio on the Sea Surface Temperatures in the Yellow, the Japan and the East China Seas (아시아 季節風과 쿠로시오가 黃海, 東海 및 東支那海의 表面水溫에 미치는 影響)

  • 강옥균
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • A simple analytic model of the sea surface temperature(SST) is developed in order to understand the effects of the Asian monsoon and the Kuroshio on the annual variations of SST by the Asian monsoon is almost in phase with the incoming radiation whereas that by the Kuroshio is out of phase with the incoming radiation. In the Yellow Sea, due to the heat advection by the Asian monsoon, the yearly mean SST is low and the annual range of SST exceeds 20$^{\circ}C$. The annual range of SST in the northwestern Japan Sea is large because of the combined effects of the Asian monsoon and the cold water advection. In the Kuroshio and in the Tsushima Current regions, the annual range of SST is small and the mean SST is high due to the heat advection by warm currents.

A Prediction of Northeast Asian Summer Precipitation Using Teleconnection (원격상관을 이용한 북동아시아 여름철 강수량 예측)

  • Lee, Kang-Jin;Kwon, MinHo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.179-183
    • /
    • 2015
  • Even though state-of-the-art general circulation models is improved step by step, the seasonal predictability of the East Asian summer monsoon still remains poor. In contrast, the seasonal predictability of western North Pacific and Indian monsoon region using dynamic models is relatively high. This study builds canonical correlation analysis model for seasonal prediction using wind fields over western North Pacific and Indian Ocean from the Global Seasonal Forecasting System version 5 (GloSea5), and then assesses the predictability of so-called hybrid model. In addition, we suggest improvement method for forecast skill by introducing the lagged ensemble technique.

Impact of IODM and ENSO on the East Asian Monsoon: Simulations through NCAR Community Atmospheric Model (동아시아 몬순 지역에서 IODM과 ENSO의 영향 : NCAR Community Atmospheric Model을 이용한 모의 실험)

  • Oh J.-H.;Chaudhari H. S.;Kripalani R. H.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.240-249
    • /
    • 2005
  • The normal Indian Ocean is characterized by warmer waters over the eastern region and cooler waters over the western region. Changes in sea surface temperature (SST) over the western and eastern Indian Ocean give birth to a phenomenon now referred to as the Indian Ocean Dipole Mode (IODM). The positive phase of this mode is characterized by positive SST anomalies over the western Indian Ocean and negative anomalies over the southeastern Indian Ocean, while the negative phase is characterized by a reversed SST anomaly pattern. On the other hand, the normal Pacific Ocean has warm (cool) waters over the western (eastern) parts. Positive (negative) SST anomalies over the central/eastern (western) Pacific Ocean characterize the E1 Nino phenomenon. The reverse situation leads to the La Nina phenomenon. The coupled ocean-atmosphere phenomenon over the Pacific is referred to as the E1 Nino Southern Oscillation (ENSO) phenomenon. In this study the impact of IODM and ENSO on the East Asian monsoon variability has been studied using observational data and using the Community Atmospheric Model (CAM) of the National Center for Atmospheric Research (NCAR). Five sets of model experiments were performed with anomalous SST patterns associated with IODM/ENSO superimposed on the climatological SSTs. The empirical and dynamic approaches reveal that it takes about 3-4 seasons fur the peak IODM mode to influence the summer monsoon activity over East Asia. On the other hand, the impact of ENSO on the East Asian monsoon could occur simultaneously. Further, the negative (positive) phase of IODM and E1 Nino (La Nina) over the Pacific enhances (suppresses) monsoon activity over the Korea-Japan Sector. Alternatively, IODM appears to have no significant impact on monsoon variability over China. However, El Nino (La Nina) suppresses (enhances) monsoon activity over China. While the IODM appears to influence the North Pacific subtropical high, ENSO appears to influence the Aleutian low over the northwest Pacific. Thus, the moisture supply towards East Asia from the Pacific is determined by the strengthening/weakening of the subtropical high and the Aleutian low.

Asian Monsoon Variation revealed by the speleothem records from Pyeongchang, Korea (동굴생성물(석순)을 이용한 한반도 고기후 연구 - 홀로세의 몬순 변화를 중심으로 -)

  • Yu, Keun Bae;Kong, Dal-Yong;Lee, Hyoun A;Kim, Chan Woong;Yim, Jong Seo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.2
    • /
    • pp.439-449
    • /
    • 2016
  • Understanding the variability of the monsoon system requires information about the changes in the past. We revealed the Mid- and Late-Holocene paleo-climate changes and Asian monsoon variations in Korea by the speleothem records from Pyeongchang. To this, we used thicknesses of growth laminae, stable-isotope analysis (carbon, oxygen), and radio-carbon age dating. The speleothem grew between ~4580 yr BP to ~660 yr BP and we identified several weak AM(Asian monsoon) events, such as Middle Bronze Age Cold Epoch, Iron Age Cold Epoch, and Dark Age Cold Period. These events might have occurred relatively early compared to those of other studies.

  • PDF

Intercomparison of the East-Asian Summer Monsoon on 11-18 July 2004, simulated by WRF, MM5, and RSM models (WRF, MM5, RSM 모형에서 모의한 2004년 7월 11-18일의 동아시아 몬순의 비교)

  • Ham, Su-Ryun;Park, Seon-Joo;Bang, Cheol-Han;Jung, Byoung-Joo;Hong, Song-You
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • This study compares the summer monsoon circulations during a heavy rainfall period over the Korean peninsular from 11 to 18 July 2004, simulated by three widely used regional models; WRF, MM5, and RSM. An identical model setup is carried out for all the experiments, except for the physical option differences in the RSM. The three models with a nominal resolution of about 50 km over Korea are nested by NCEP-DOE reanalysis data. Another RSM experiment with the same cumulus parameterization scheme as in the WRF and MM5 is designed to investigate the importance of the representation of subgrid-scale parameterized convection in reproducing monsoonal circulations in East Asia. All thee models are found to be capable of reproducing the general distribution of monsoonal precipitation, extending northeastward from south China across the Korean peninsula, to northern Japan. The results from the WRF and MM5 are similar in terms of accumulated precipitation, but a slightly better performance in the WRF than in the MM5. The RSM improves the bias for precipitation as compared to those from the WRF and MM5, but the pattern correlation is degraded due to overestimation of precipitation in northern China. In the comparison of simulated synoptic scale features, the RSM is found to reproduce the large-scale features well compared to the results from the MM5 and WRF. On the other hand, the simulated precipitation from the RSM with the convection scheme used in the MM5 and WRF is closer to that from the WRF and MM5 simulations, indicating the significant dependency of simulated precipitation in East Asia on the cumulus parameterization scheme.

Simulation Skills of RegCM4 for Regional Climate over CORDEX East Asia driven by HadGEM2-AO (CORDEX 동아시아 지역에서 HadGEM2-AO를 경계조건으로 처방한 RegCM4의 상세 지역기후 모의성능)

  • Oh, Seok-Geun;Suh, Myoung-Seok;Cha, Dong-Hyun;Choi, Suk-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.732-749
    • /
    • 2011
  • In this study, 27-year (1979-2005) regional climate over the CORDEX East Asia domain was reproduced using a regional climate model, RegCM4, driven by HadGEM2-AO output, and the model's simulation skill was evaluated in terms of surface air temperature and precipitation. The RegCM4 reasonably simulated the spatial distribution and interannual variability and seasonal variability of surface air temperature, while it had systematic biases in the simulation of precipitation. In particular, simulated rainband of East Asian summer monsoon was southward shifted below $30^{\circ}N$ as compared with the observation, thereby, summer mean precipitation over South Korea was significantly underestimated. Simulated temperature from the RegCM4 driven by the HadGEM2-AO output was comparable to that driven by the reanalysis. However, the RegCM4 driven by the HadGEM2-AO had prominently poor skill in the simulation of precipitation. This can be associated with the distorted monsoon circulations in the driving data (i.e., HadGEM2-AO) such as southward shifted low-level southwesterly, which resulted in the erroneous evolution of East Asian summer monsoon simulated by RegCM4.

Strengthened Madden-Julian Oscillation Variability improved the 2020 Summer Rainfall Prediction in East Asia

  • Jieun Wie;Semin Yun;Jinhee Kang;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.185-195
    • /
    • 2023
  • The prolonged and heavy East Asian summer precipitation in 2020 may have been caused by an enhanced Madden-Julian Oscillation (MJO), which requires evaluation using forecast models. We examined the performance of GloSea6, an operational forecast model, in predicting the East Asian summer precipitation during July 2020, and investigated the role of MJO in the extreme rainfall event. Two experiments, CON and EXP, were conducted using different convection schemes, 6A and 5A, respectively to simulate various aspects of MJO. The EXP runs yielded stronger forecasts of East Asian precipitation for July 2020 than the CON runs, probably due to the prominent MJO realization in the former experiment. The stronger MJO created stronger moist southerly winds associated with the western North Pacific subtropical high, which led to increased precipitation. The strengthening of the MJO was found to improve the prediction accuracy of East Asian summer precipitation. However, it is important to note that this study does not discuss the impact of changes in the convection scheme on the modulation of MJO. Further research is needed to understand other factors that could strengthen the MJO and improve the forecast.

Impact of Change in Monsoonal Circulation Due to SST Warming on the North East Asian Monsoon: A Model Analysis Using Satellite Based Sub-Grid Hydrometeors

  • Bhattacharya, Anwesa;Park, Rae Seol;Kwon, Young Cheol
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.545-561
    • /
    • 2018
  • Over the North East Asia, extreme anomalous precipitation were observed in 2013 and 2014. During 2013 summer the precipitation was found to be higher (two standard deviation) than the climatological mean of the region; whereas during 2014, which was a borderline El Ni?o year, precipitation was found to be lower (one standard deviation). To understand the differences of these two anomalous years the Global/Regional Integrated Model system (GRIMs) has been used. The study found that low landsurface temperature and high sea-surface temperature over ocean caused a smaller land-sea contrast of surface temperature between East Asia and North West Pacific Ocean in 2014, which could have caused an eastward shift of mean monsoon circulation in that year compared to the circulation in 2013. Due to a change in the lower level circulation and wind field over East Asia the evaporation and moisture transport patterns became very different in those two years. In 2013, this study found high latent heat flux over Eastern China, which implies an increased surface evaporation over that region, and the moisture transported to the north by the mean monsoon circulation; whereas, there was no correlated transport of moisture to the North East Asia during 2014. The precipitable water over North East Asia has a stronger correlation with the latent heat flux over southern land region than that from Ocean region in the eastern side in both the years. A new approach is proposed to estimate the sub-grid scale hydrometeors from GRIMs, overestimated in the existing model.