• 제목/요약/키워드: Earthquake zone

검색결과 252건 처리시간 0.028초

오대산 지진자료에 의한 거리감쇠식 추정에 관한 연구 (A Study on the Presumption for Attenuation Relation by MT. O-dae earthquake data in Korea)

  • 권기혁;황완선;유혜란
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.33-36
    • /
    • 2008
  • In Korean Building Code 2005(KBC-2005), the Seismic Zone Factor is regulated by separating the seismic zone into two part. This seismic zone factor is not matched to regional seismic characteristics of our country because the factor is based on International Building Code 2000 (IBC-2000) of USA. This study inquiry for having a sufficient grasp of the seismic characteristics of south Korea region and appling for the seismic cope plan. We have collected and analyzed earthquake record happened in domestic region. There are two kinds of earthquake record. One is Historical earthquake data, another is Instrumental earthquake data. I used Instrumental earthquake record data which reliance is higher than historical earthquake data for proposing attenuation formulas by analyzing a correlation the epicenter and the distance.

  • PDF

지역계수 설정을 위한 지역별 지진발생특성 분석 (Analysis of Regional Seismic Characters for Establishing Seismic Zone Factor)

  • 권기혁;황완선;서치호
    • 한국방재학회 논문집
    • /
    • 제6권3호
    • /
    • pp.1-8
    • /
    • 2006
  • 지진 지역계수는 역사지진과 계기지진의 기록을 기초로 한 지진의 지역성이 고려된 지역적 지진특성을 고려하여 평가되어진다. 본 연구는 국내 지진자료의 분석을 통해 지역별 지진발생 특성을 정리하고 국내의 지진환경 특성을 검토하여 지진지역 계수 설정을 위한 기초 자료의 제공을 목적으로 한다. 이 연구를 통해 역사지진과 계기지진에 각각의 특성을 정리하였고 이를 비교하여 우리나라의 지진발생 특성에 대한 기초 자료를 얻을 수 있었다.

3D Finite Element Analysis of Fault Displacements in the Nobi Fault Zone, Japan

  • Choi, Young-Mook;Kim, Woo-Seok;Lee, Chul-Goo;Kim, Chang-Yong;Seo, Yong-Seok
    • 지질공학
    • /
    • 제24권3호
    • /
    • pp.323-332
    • /
    • 2014
  • The Nobi fault zone, which generated the 1891 Nobi Earthquake (M8.0), includes five or six faults distributed in and around Gifu and Aichi prefectures, Japan. Because large cities are located near the fault zone (e.g., Gifu and Nagoya), and because the zone will likely be reactivated in the future, relatively thorough surveys have been conducted on the 1891 Nobi earthquake event, examining the fault geometry, house collapse rate, and the magnitude and distribution of earthquake intensity and fault displacement. In this study, we calculated the earthquake slip along faults in the Nobi fault zone by applying a 3D numerical analysis. The analysis shows that a zone with slip displacements of up to 100 mm included all areas with house collapse rates of 100%. In addition, the maximum vertical displacement was approximately ${\pm}1700mm$, which is in agreement with the ${\pm}1400mm$ or greater vertical displacements obtained in previous studies. The analysis yielded a fault zone with slip displacements of > 30 mm that is coincident with areas in which house collapse rates were 60% of more. The analysis shows that the regional slip sense was coincident with areas of uplift and subsidence caused by the Nobi earthquake.

24 January 2020 Sivrice (Elazığ) earthquake damages and determination of earthquake parameters in the region

  • Isik, Ercan;Aydin, Mehmet Cihan;Buyuksarac, Aydin
    • Earthquakes and Structures
    • /
    • 제19권2호
    • /
    • pp.145-156
    • /
    • 2020
  • The 24 January 2020 (Mw=6.8) earthquake with epicentre in Elazığ (Sivrice) on the East Anatolian Fault Zone caused loss of life and property. The information was given about the seismotectonic setting and regional seismicity along this fault zone and aftershock activity and ground motion data of this earthquake. Earthquake parameters were obtained for five different earthquake stations which were closer to the epicentre. Horizontal and vertical design spectra were obtained for the geographic locations for each earthquake station. The obtained spectra for the earthquake epicentre were compared with selected appropriate attenuation relationships. The damages after earthquake were evaluated via geotechnical and structural aspects. This study also aims to investigate the cause-effect relationships between structural damage in reinforced-concrete and masonry structures, respectively. The lack of engineering services was effective on the amount of damage in masonry structures. Insufficient reinforcement and concrete strength, dimensions and inadequate detailing increased the amount of damage in reinforced-concrete structures. Importance should be given to negative parameters that may weaken the defence mechanisms of structures for earthquake-resistant structural design.

The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards

  • Isik, Ercan;Karasin, ibrahim Baran;Karasin, Abdulhalim
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.85-100
    • /
    • 2022
  • The updated Turkish Building Earthquake Code has been significantly renovated and expanded compared to previous seismic design codes. The use of earthquake ground motion levels with different probabilities of exceedance is one of the major advances in structural mechanics with the current code. This study aims to investigate the earthquake performance of steel structure in settlements with different seismic hazards for various earthquake ground motion levels. It is focused on earthquake and structural parameters for four different ground motion levels with different probabilities of exceedance calculated according to the location of the structure by the updated Turkish Hazard Map. For this purpose, each of the seven different geographical regions of Turkey which has the same seismic zone in the previous earthquake hazard map has been considered. Earthquake parameters, horizontal design elastic spectra obtained and comparisons were made for all different ground motion levels for the seven different locations, respectively. Structural analyzes for a sample steel structure were carried out using pushover analysis by using the obtained design spectra. It has been determined that the different ground motion levels significantly affect the expected target displacements of the structure for performance criteria. It is noted that the different locations of the same earthquake zone in the previous code with the same earthquake-building parameters show significant variations due to the micro zoning properties of the updated seismic design code. In addition, the main innovations of the updated code were discussed.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

면진장치를 적용한 컴퓨터실 바닥의 지진응답해석 (Seismic Response Analysis of Computer Floors Using Base Isolation System)

  • 이경진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.424-431
    • /
    • 2000
  • After the Kobe earthquake(1995) in Japan, the Izmit earthquake(1997) in Turkey and the Chi-chi earthquake(1999) in Taiwan, the small-to-medium-sized earthquakes occurred in the Koreans peninsula and this shows the fact that Korea is not located in the safety zone of earthquake. The main concept of base isolation system is to reduce the member forces by decreasing the earthquake forces transmitted to superstructure instead of the conventional techniques of strengthening the structural members. This study investigates the effect of seismic response attenuation of computer floors using base isolation systems

  • PDF

'태국 연안역의 지진해일 충격' 야외답사 보고 (Report on the Field Excursion, 'Tsunami impact on the coastal zone of Thailand')

  • 장세원;이희일;박영수
    • 한국해양학회지:바다
    • /
    • 제10권3호
    • /
    • pp.171-180
    • /
    • 2005
  • 2004년 수마트라 지진에 의해 야기된 지진해일의 충격과 관련하여 태국 피해연안에서 "Tsunami impact on the coastal zone of Thailand"라는 제목의 야외답사가 3일간 수행되었다. 태국 안다만해 연안의 지진해일 피해지역은 피해정도에 따라 심한 피해 연안역, 중간 피해 연안역, 약한 피해 연안역으로 구분된다. 하구의 수로들은 넓어지고 해빈 모래는 침식되어 인근해역이나 배후지역에 재퇴적되었다. 답사는 심한 피해 연안역인 팡아(Phang Nga)주와 약한 피해 연안역인 푸켓 섬 등 대표지역의 총 12개 지점에서 수행되었다. 본고에서는 지진해일 이전과 이후의 위성자료와 현장답사 사진을 중심으로 지질해일이 태국의 연안역에 미친 지질학적 영향을 소개한다.

The 29 May 2004 Offshore Southeast Coast of Korea Earthquake Sequence: Shallow Earthquakes in the Ulleung Back-arc basin, East Sea (Sea of Japan)

  • ;노명현
    • 지구물리
    • /
    • 제9권3호
    • /
    • pp.249-262
    • /
    • 2006
  • The 29 May 2004 offshore Uljin, Korea earthquake was predominantly thrust-faulting at a depth of approximately 12 (±2) km. The mainshock attained the seismic moment of M0 =5.41 (±1.87)  1016 N m (Mw = 5.1). The focal mechanism indicates a subhorizontal P-axis trending 264° and plunging 2°. The orientation of P- and T-axis is consistent with the direction of absolute plate motion generally observed within the plates, hence the cause of the May 29 shock is the broad-scale stress pattern from the forces acting on the downgoing slab along the Japan trench and inhibiting forces balancing it. The 29 May 2004 earthquake occurred along a deep seated (~12 km), pre-existing feature that is expressed on the surface as the basement escarpment along the western and southern slopes of the Ulleung basin. The concentrated seismicity along this basement escarpment suggests that this feature may qualify as a seismic zone - the Ulleung basement escarpment seismic zone (UBESZ).

  • PDF

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.