• 제목/요약/키워드: Earthquake control system

검색결과 342건 처리시간 0.021초

Evaluation of the effect of smart façade systems in reducing dynamic response of structures subjected to seismic loads

  • Samali, Bijan;Abtahi, Pouya
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.983-1000
    • /
    • 2016
  • To date the engineering community has seen facade systems as non-structural elements with high aesthetic value and a barrier between the outdoor and indoor environments. The role of facades in energy use in a building has also been recognized and the industry is also witnessing the emergence of many energy efficient facade systems. This paper will focus on using exterior skin of the double skin facade system as a dissipative movable element during earthquake excitation. The main aim of this study is to investigate the potential of the facade system to act as a damper system to reduce earthquake-induced vibration of the primary structure. Unlike traditional mass dampers, which are usually placed at the top level of structures, the movable/smart double skin facade systems are distributed throughout the entire height of building structures. The outer skin is moveable and can act as a multi tuned mass dampers (MTMDs) that move and dissipate energy during strong earthquake motions. In this paper, using a three dimensional 10-storey building structure as the example, it is shown that with optimal choice of materials for stiffness and damping of brackets connecting the two skins, a substantial portion of earthquake induced vibration energy can be dissipated which leads to avoiding expensive ductile seismic designs. It is shown that the engineering demand parameters (EDPs) for a low-rise building structures subjected to moderate to severe earthquakes can be substantially reduced by introduction of a smart designed double skin system.

슬릿형 댐퍼를 부착한 철골조 시스템의 가동적 지진응답실험 (Pseudo Dynamic Earthquake Response Tests on Steel Frames with Slit Plate Damper)

  • 이승재;박재성;오상훈;유홍식
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 2008
  • 본 연구는 설계가 간편하고 경제성을 확보하면서 구조안전성을 동시에 확보할 수 있는 댐퍼시스템을 제안하고, 지진응답특성을 실증적으로 파악하는 것을 목적으로 한다. 이를 위하여, 실대형 1층 철골조 실험체 3개를 설계 및 제작하여 가동적 지진응답실험을 수행하였다. 본 연구에서 제안하는 슬릿형 댐퍼를 제진요소로 사용하는 경우, 주구조체에 비하여 높은 강성을 갖는 댐퍼가 소폭의 변위에 먼저 소성화 함으로써 이력에 의한 지진에너지를 흡수할 수 있으며, 지진응답에서 유리한 것이 판명되었다.

  • PDF

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

Using the pendulum column as an isolator by reducing the gravity effect

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.297-305
    • /
    • 2023
  • The conventional method of structural seismic design was based on increasing structural capacity, which usually didn't reduce earthquake seismic effects. By changing the philosophy of structure design, technologies such as passive seismic control have been used in structures. So far, a large number of seismic isolation systems have been introduced to dissipate earthquake energy that is applied to a structure. These systems act against earthquakes rather than increasing the strength and capacity of the structure. In the present paper, a suspended column called a "pendulum column" is investigated, and a new idea has been considered to improve the performance of the pendulum column isolator by changing the gravity effect by adding a spring under the isolator system. The behavior of the studied isolator system has been researched. Then the isolator system was investigated under different earthquakes and compared with a common pendulum column isolator. The results show that changing the gravity effect has an effective role in the response of the system by reducing the system stiffness. Equations for the system showed that even in a special state, complete isolation is possible. Finally, the tested model verified the theory.

원전 주제어실 3차원 층 지진격리시스템의 진동대 실험 연구 (Shaking Table Experimental Study on 3-Dimensional Floor Isolation in Main Control Room of Nuclear Power Plant)

  • 이경진;함경원;서용표;윤현도
    • 한국지진공학회논문집
    • /
    • 제12권1호
    • /
    • pp.57-66
    • /
    • 2008
  • 본 연구에서는 원전 주제어실의 3차원 층 지진격리시스템에 대한 지진동 저감성능과 적용성을 평가하기 위해서 실험연구를 수행하였다. 3차원 층 지진격리시스템에 적용하기 위해서 마찰진자시스템과 에어 스프링을 설계하고 제작하였다. 제어 캐비닛과 액세스 플로어, 격자 프레임, 4개의 마찰진자와 에어 스프링으로 구성된 원전 주제어실 부분 실험모형을 2종류 제작하여 층 지진격리시스템의 원전 적용성을 평가하였다. 실험을 위해서 원전 주제어실의 운전기준지진(OBE)과 안전정지지진(SSE)의 수직방향, 수평방향 층 응답 스펙트럼을 이용하여 인공지진 시간이력을 만들어서 진동대 실험에 사용하였다. 입력지진에 대한 실험모형의 지진응답은 비 지진격리에 비해 3차원 층 지진격리시스템을 적용한 경우, 우수한 지진동 저감특성을 나타냈다

WISE 복합기상센서 관측 자료 품질관리시스템 (The WISE Quality Control System for Integrated Meteorological Sensor Data)

  • 채정훈;박문수;최영진
    • 대기
    • /
    • 제24권3호
    • /
    • pp.445-456
    • /
    • 2014
  • A real-time quality control system for meteorological data (air temperature, air pressure, relative humidity, wind speed, wind direction, and precipitation) measured by an integrated meteorological sensor has been developed based on comparison of quality control procedures for meteorological data that were developed by the World Meteorological Organization and the Korea Meteorological Administration (KMA), using time series and statistical analysis of a 12-year meteorological data set observed from 2000 to 2011 at the Incheon site in Korea. The quality control system includes missing value, physical limit, step, internal consistency, persistence, and climate range tests. Flags indicating good, doubtful, erroneous, not checked, or missing values were added to the raw data after the quality control procedure. The climate range test was applied to the monthly data for air temperature and pressure, and its threshold values were modified from ${\pm}2{\sigma}$ and ${\pm}3{\sigma}$ to ${\pm}3{\sigma}$ and ${\pm}6{\sigma}$, respectively, in order to consider extreme phenomena such as heat waves and typhoons. In addition, the threshold values of the step test for air temperature, air pressure, relative humidity, and wind speed were modified to $0.7^{\circ}C$, 0.4 hPa, 5.9%, and $4.6m\;s^{-1}$, respectively, through standard deviation analysis of step difference according to their averaging period. The modified quality control system was applied to the meteorological data observed by the Weather Information Service Engine in March 2014 and exhibited improved performance compared to the KMA procedures.

국내 비내진 설계 철근콘크리트 아파트에 대한 지진피해 예측 연구 (A Study on Earthquke Damage Estimation of Non Precede Designed Reinforced Concrete Apartment in Korea)

  • 권기혁;고용범
    • 한국방재학회 논문집
    • /
    • 제5권4호
    • /
    • pp.95-105
    • /
    • 2005
  • 우리나라는 비교적 안정된 판 내부에 존재한다. 하지만, 1976년 안전지대로 평가된 중국 탕산지역의 대규모 지진이 발생한 것처럼 우리나라도 지진에 대해 안전한 지역이라고 단언할 수는 없다. 게다가, 지진학자들도 국내에서 중규모 이상의 지진발생 가능성이 높다고 지적하고 있다. 이러한, 지진은 자체를 예방할 수 없기 때문에 내진설계에 대한 연구와 지진재해 관리체계에 대한 연구가 전반적으로 이루어지고 있다. 그러나, 지진발생 시 초기 대응이나 수습과정에 대한 연구는 미비한 상태이며, 지진피해 평가시스템 구축을 위한 극소수의 연구가 진행되고 있는 실정이다. 따라서, 본 연구는 국내실정을 고려한 지진피해 평가시스템 구축을 위한 기초자료를 제시함을 목적으로 한다. 이를 위하여 강남구 비내진 철근콘크리트 아파트를 표준형 건축물로 선정하여 지진피해를 예측하고, 취약도 함수의 도출과 층간변위에 따른 피해평가를 행하여 HAZUS 프로그램 취약도 함수 적용결과와 비교 분석한다.

모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 (Active control for Seismic Response Reduction using Modal-fuzzy Approach)

  • 최강민;박규식;김춘호;이인원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.513-520
    • /
    • 2005
  • An active modal-fuzzy control method using hydraulic actuators is presented for seismic response reduction. In the proposed control system, a new fuzzy controller designed in the modal space produces the desired active control force. This type controller has all advantages of the fuzzy control algorithm and modal approach. Since it is very difficult to select input variables used in fuzzy controller among an amount of state variables in the active fuzzy control system, the presented algorithm adopts the modal control algorithm which is able to consider more easily information of all state variables in civil structures that are usually dominated by first few modes. In other words, all information of the whole structure can be considered in the control algorithm evaluated to reduce seismic responses and it can be efficient for especially civil structures. In addition, the presented algorithm is expected to magnify utility and performance caused by efficiency that the fuzzy algorithm can handle complex model more easily. An active modal-fuzzy control scheme is applied together with a Kalman filter and a low-pass filter to be applicable to real civil structures. A Kalman filter is considered to estimate modal states and a low-pass filter was used to eliminate spillover problem. The results of the numerical simulations for a wide amplitude range of loading conditions show that the proposed active modal-fuzzy control system can be beneficial in reducing seismic responses of civil structures.

  • PDF

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

MR감쇠기가 설치된 구조물의 등가선형 시스템에 대한 가진 특성의 영향 (Effects of excitation characteristics on the equivalent linear system of a building structure with MR dampers)

  • 박지훈;민경원;문병욱;박은천
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.503-510
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with an MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with an MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed.

  • PDF