• Title/Summary/Keyword: Earthquake behavior

Search Result 1,461, Processing Time 0.028 seconds

The Dynamic Behavior Properties of Concrete Dam for Seismic Magnitude (지진규모에 따른 콘크리트댐의 동적거동특성)

  • 임정열;이종욱;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.169-176
    • /
    • 2002
  • It was performed that the seismic response analysis using seismic magnitude and concrete dam type(Model-1, Model-2) on dynamic behavior properties of concrete dam. As a results of each seismic magnitude acted on concrete dam, the maximum response acceleration at dam crest was amplified about 3, 5-4 times and maximum displacement and stress at dam crest of Model-2 was larger than Model-1. So, it can be recommended that codified-seismic coefficient method is proper in case of seismic design of concrete dam and Model-1 is better than Model 2 in consideration of stability in displacement and stress of design of concrete dam.

  • PDF

An Experimental Study on the Behavior of Reinforced Concrete Multi-Column Piers with Different Longitudinal and Transverse Reinforcement Details (주철근 겹침이음 및 횡철근 상세에 따른 철근콘크리트 다주교각의 거동특성에 관한 실험적 연구)

  • 김재관;김익현;김정한;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.211-219
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that the ductility of the model in transverse direction is rather higher than in longitudinal direction because of formation of several plastic hinges and that the ultimate displacement and the energy absorbtion capacity are enhanced by using continuous longitudinal bars instead of lap-splice ones. And it is confirmed that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier.

  • PDF

An optimized torsional design of asymmetric wall structures (비대칭 벽식구조의 최적 비틀림 설계)

  • 조봉호;홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.327-334
    • /
    • 2002
  • This paper develops an optimized torsional design method of asymmetric wall structures considering deformation capacities of walls. Contrary to the current torsional provisions, a deformation based torsional design is based on the assumption that stiffness and strength are dependent. Current torsional provisions specify two design eccentricity of stiffness to calculate the design forces of members. But such a methodology leads to an excessive over-strength of some members and an optimal torsional behavior is not ensured. Deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Because optimal torsional behavior can be defined based on the deformation of members, deformation based torsional design procedure can be applied to the optimal and performance-based torsional design. To consider the effect of accidental eccentricity, an over-strength factor is defined. The over-strength factor is determined from performance level, torsional resistance and arrangement of walls.

  • PDF

Dynamic Property Evaluation of Lead Rubber Bearing by Shear Loading (적층고무베어링의 동적 특성평가)

  • 이경진;김갑순;강태경;서용표;이종림
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.367-372
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic properties and mechanical characteristics of the 10tonf-LRB(Lead-Rubber Bearing). Experimental studies were performed to obtain the hysteretic behavior, effective shear stiffness( $K_{eff}$), equivalent damping( $H_{eq}$ ), capacity of energy dissipation( $W_{D}$) of six 10tonf-LRB. Especially, in this study, the response of the LRB for high loading frequency(0.5Hz~3.0Hz) was estimated. The effective shear stiffness of the LRB decreases and the capacity of energy dissipation increases as the shear strain amplitude increases. But the shear behavior of the LRB is not affected sensitively by loading frequency.y.y.

  • PDF

Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity (지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석)

  • 김민규;임윤묵;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

Cyclic Behavior of Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 적용한 철근콘크리트 연결보의 이력거동 평가)

  • Han, Sang Whan;Kwon, Hyun Wook;Shin, Myung Su;Lee, Ki Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • Diagonal reinforced coupling beam of coupled shear walls can provide sufficient strength and stiffness to resist lateral force. However, the reinforcement details for coupling beams required by ACI 318 (2011) are difficult to construct because of the reinforcement congestion and confined interior area. This study presents experimental results about the seismic performance of coupling beams having bundled diagonal reinforcement to improve the workability. Experiments were conducted using half scaled precast coupling beams having an aspect ratio of 2.0. It was observed that the bundled diagonal reinforced coupling beams can develop seismic performance similar to the coupling beams with requirement details specified in ACI 318 (2011).

Shaking Table Tests of A 1/12-Scale Reinforced Concrete Upper-Wall Lower-Frame Structure (1/12 축소 철근콘크리트 주상복합구조물의 진동대실험)

  • 이한선;김상연;고동우;권기혁;김병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.139-144
    • /
    • 2001
  • The objective of this study is to investigate the behavior of 1/12 scale upper-wall lower-frame reinforced concrete structure subjected to earthquake excitations. For this purpose, Taft N21E earthquake accelerogram was simulated by using 4m$\times$4m shaking table. When the input acceleration is compared to that of output, it was found that simulation of shaking table is satisfactory. From the test results with peak ground acceleration(PGA) 0.22g, which corresponds to 0.11g in prototype by the similitude law, it can be observed that the model responded in elastic behavior and that large interstory drift occurred at the lower part of the structure.

  • PDF

Nonlinear Dynamic Response of Well-Slab Apartment Building Considering The Behavior of Coupling Elements (벽식 아파트 구조에서 연결부재의 거동특성을 고려한 비선형 동적 응답)

  • 김기현;장극관;서대원;천영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.437-442
    • /
    • 2002
  • The purpose of this study is to investigate nonlinear behavior and estimate ultimate resistance of the wall structure against seismic loading. Experimental data for RC coupling elements are used for specifying the strength deterioration and stiffness degradation factor of hysteretic model. Modified coupling element models are used in the push over analysis and time history analysis. In the time history analysis, three earthquake waves are used in the analysis and their peak ground accelerations are changed to be 0.2g. The conclusions of this study are as follows : (1) In the push over analysis, yielding of coupling elements occurred at lower story with small story drift ratio as 0.3%. (2) In the time history analysis, the story drift ratio is sufficient for the requirement of Korean Code, But coupling elements at most stories of the buildings occurred yielding. i. e. the earthquake resistant capacity of shear wall structures is not sufficient at 0.2g.

  • PDF

On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

  • JafarRamaji, Issa;Mofid, Massood
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly accurate models in Drain-2DX, the inelastic behavior of the system is carefully considered. In addition, with inelastic study of the new bracing system and comparison with the prevalent Knee Bracing Frame system (KBF model) in nonlinear static and dynamic analysis, the seismic behavior of the new bracing system is reasonably evaluated.

New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: II. Parametric Study (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: II. 매개변수 연구)

  • Kim, Tae-Hoon;Kim, Ho-Young;Son, Je-Kuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.121-132
    • /
    • 2015
  • The purpose of this study is to investigate the behavior characteristics of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details and the spacing of the transverse reinforcement. Additional eight column section specimens were tested under quasi-static monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A innovative confining effect model was adopted for new hollow bridge pier sections. This study documents the testing of new hollow RC bridge pier sections with triangular reinforcement details and presents conclusions based on the experimental and analytical findings.