• Title/Summary/Keyword: Earthquake behavior

Search Result 1,453, Processing Time 0.021 seconds

A Study on the Dynamic Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;정명채;이진섭;이갑수;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.151-158
    • /
    • 1999
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent very different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study the .earthquake response behavior is verified according to the factor of each shape, rise/span ratio, ana damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Correlation of damage and analysis of R/C building: Experience from the 1995 Kobe earthquake

  • Matsumori, Taizo;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.841-856
    • /
    • 1998
  • During the 1995 Hyogoken-Nanbu Earthquake, a reinforced concrete building, called Jeunesse Rokko, suffered intermediate damage by forming a beam-yielding (weak-beam strong-column) mechanism, which has been regarded as the most desirable earthquake resisting mechanism throughout the world. High cost to repair damage at many beam ends and poor appearance expected after the repair work made the owner decide to tear down the building. Nonlinear earthquake response analyses were conducted to simulate the behavior of the building during the earthquake. The influence of non-structural members was considered in the analysis. The calculated results were compared with the observed damage, especially the location of yield hinges and compression failure of spandrel beams, and the degree of cracking in columns and in column-girder connections.

Effect of Dam-Foundation Boundary Modeling on Cracking Damage Behavior of Concrete Dams (댐체-기초 경계 모델링에 따른 콘크리트댐의 지진 균열거동)

  • Lee, Jee-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, a computational model for nonlinear crack damage analysis of concrete gravity dam-foundation boundary region subjected to earthquake loading is suggested. An enhanced model based on the Lee-Fenves plastic-damage model is used as the inelastic material model for a concrete dam structure and rock foundation. The suggested model is implemented numerically and used for computational earthquake simulation of Koyna dam, which was severly damaged from the strong earthquake in 1967. From the numerical result it is demonstrated that the suggested computational model can realistically represent crack initiation and propagation in the dam-foundation boundary region.

  • PDF

A Study on Stability of Earthquake in Estuary Barrage through Shaking Table Test (실내 진동대 실험을 통한 하구둑 구조물의 내진 안정성에 관한 연구)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Ryu, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.38-44
    • /
    • 2010
  • Shaking table tests were performed to reproduce the dynamic behavior of estuary barrage and its subbase soil which can be potentially damaged during earthquake loading. For understanding the vibration effect to the ground during earthquake, the model was formulated with 1/300 scale of prototype estuary barrage and subbase soil. Scott and Iai(1989) proposed the law of the similarity for similar experimental conditions. The laboratory model shaking table test was conducted under the vibration condition of simulated earthquake of 0.154g. The horizontal displacement on the structure was measured during the shaking table test. The pore water pressure was also monitored for the underground layers of soil. The field horizontal displacement and the pore water pressure can be predicted by using the results of the laboratory shaking table test.

  • PDF

Evaluation of Response Modification Factore for Earthquake Resistant Design of Moment-Resisting Steel Frames (모멘트-연성 강구조물의 내진설계를 위한 반응수정계수의 평가)

  • 송종걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.201-208
    • /
    • 1997
  • In most seismic codes such as the Uniform Building Code(UBC), the response modification factor(or the force reduction factor)is used to reflect the capability of a structure in dissipating energy through inelastic behavior. The response modification factor is assigned according to structural system type. Ductile systems such as special moment-resisting steel frames are assigned larger values of the response modification factor, and are consequently designed for smaller seismic design forces. Therefore, structural damage may occur during a severe earthquake. To ensure safety of the structures, the suitability of the response modification factor used in aseismic design procedures shall be evaluated. The object of this study is to develop a method for the evaluating of the response modification factor. The validity of the evaluating method has been examined for several cases of different structures and different earthquake excitations.

  • PDF

A Study on the Buckling Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 좌굴 거동 특성에 관한 연구)

  • 한상을;유용주;이상주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-496
    • /
    • 1998
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent ye different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study, the earthquake response behavior is verified according to the factor of each shape, rise/span ratio, and damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Characteristics of Liquefaction Behavior with Earthquake Load Frequency (지진하중 주파수에 따른 액상화 거동 특성)

  • Yoon, Won-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.739-748
    • /
    • 2019
  • In this study, cyclic triaxial tests were performed for liquefaction characteristics according to earthquake loading frequency. The test period was tested for 0.1Hz, 0.2Hz, 0.5Hz 1.0Hz, 1.5Hz. It was analyzed that the number of earthquake loading increases as the test result frequendy increases. Therefore, additional study of the liquefaction evaluation method was needed considering the local characteristics of the high frequency earthquakes in Korea and the cyclic triaxial test frequency(0.1Hz), which is mainly used in the design.

Direct Earthquake Design Using Secant Stiffness (할선강성을 이용한 직접내진설계)

  • 박홍근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.239-246
    • /
    • 2003
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer, such as ductility limit on each member, the design concept of strong column - weak beam, and etc. Through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy As the result economical and safe design can be achieved.

  • PDF

Reducing Effect Analysis on Earthquake Response of 100m Spanned Single-Layered Lattice Domes With LRB Seismic Isolation System (LRB 면진 장치를 갖는 100m 단층 래티스 돔의 지진 응답에 대한 감소 효과 분석)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.53-64
    • /
    • 2019
  • The objective of this study is to investigate the earthquake response for the design of 100m spanned single-layer lattice dome. The plastic hinge analysis and eigenvalue buckling analysis are performed to estimate the ultimate load of single-layered lattice domes under vertical loads. In order to ensure the stability of lattice domes, it is investigated for the plastic hinge progressive status by the pushover increment analysis considering the elasto-plastic connection. One of the most effective methods to reduce the earthquake response of large span domes is to install the LRB isolation system of a dome. The authors discuss the reducing effect for the earthquake dynamic response of 100m spanned single-layered lattice domes. The LRB seismic isolation system can greatly reduce the dynamic response of lattice domes for the horizontal and vertical earthquake ground motion.

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.