• 제목/요약/키워드: Earthquake Type of Loading

검색결과 120건 처리시간 0.024초

실지진하중을 이용한 중진지역에서의 액상화 저항강도에 관한 실험적 연구 (An Experimental Study on the Liquefaction Resistance Strength Using Real Earthquake Loadings Considering Seismic Magnitude in Moderate Earthquake Region)

  • 김수일;최재순;박성용;박근보;심재욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.569-576
    • /
    • 2003
  • Based on the equivalent uniform stress concept Presented by Seed and Idriss, sinusoidal cyclic loads which simplified earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. The liquefaction assessment method which was invented by using the equivalent uniform stress concept is suitable for the severe earthquake region such as Japan or USA, so the proper method to Korea is needed. In this study, estimation of the resistance to liquefaction was conducted by applying real earthquake loading to the cyclic triaxial test. From the test results, the characteristics of the fine sand under moderate earthquake were analyzed and compared with the results under strong earthquakes. Typically real earthquake loads used in this study are divided into two types - impact type and vibration type. Furthermore, results of the liquefaction resistance strength based on the equivalent uniform stress concept and tile concept using real earthquake loading were compared.

  • PDF

지진하중을 받는 필댐 정부변위에 영향을 미치는 입력물성에 대한 민감도 분석 (Sensitivity Analysis of Rockfill Parameters Influencing Crest Displacements of CFRD Subjected to Earthquake Loading)

  • 하익수;신동훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.351-357
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam during earthquake loading with this input parameter. From the sensitivity analysis, it was found that the crest displacement of CFR type dam subjected to dynamic loading was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the extent of effect of shear modulus on the displacement at the crest of CFRD due to dynamic loading decreased as maximum amplitude of input acceleration increased.

  • PDF

반복하중을 받는 철근의 부착 응력도에 관한 실험적 연구 (An Experimental Study on the Bond Stress Distribution along the Reinforcing Bar Subjected to Repeated Loading $\mid$)

  • 정란;조동철;박현수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.66-71
    • /
    • 1990
  • The prediction and estimation of R/C structure behavior subjected to earthquake type loading is partly based on the experimental results of the monotonically increased cyclic loading, rather than that of the irregularly increased cyclic loading. However, actual earthquake is typical random vibration. In this respect, comparing and analysing experimental test results of R/C specimens subjected to monotonically increased cyclic loading and irregularly increased cyclic loading, this study proposes the research direction of irregularly increased cyclic loading during earthquake.

  • PDF

이방향 하중을 받는 모서리 보-기둥 접합부의 내진성능 평가 (Testing of RC Corner Beam-column Joints under Bidirectional Loading)

  • 한상환;장용석;이창석
    • 한국지진공학회논문집
    • /
    • 제24권4호
    • /
    • pp.189-196
    • /
    • 2020
  • In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uniand bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.

다양한 입력하중에서의 액상화 발생 특성 비교 연구 (An Experimental Study on the Liquefaction Behavior under Various Loading Conditions)

  • 김수일;황선주;박근보;최재순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.320-327
    • /
    • 2005
  • Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal, wedge, increasing wedge and real earthquake loading are investigated focusing on the excess pore water pressure build up instead of liquefaction resistance strength in this paper. There are large differences between two types of earthquake loading - impact and vibration in liquefaction characteristics. The angle of phase change line of sinusoidal loading is very close to the vibration type, whereas the cumulative deviator stress and cumulative plastic strain are larger than two types of real earthquake loadings. On the other hand, the liquefaction characteristics of increasing wedge loadings are located in the range between vibration and impact earthquake loadings. It is concluded that the sinusoidal loading overestimates the resistance of soil under real earthquake loading. Based on results obtained, the increasing wedge loading can reflect the liquefaction behavior under real earthquake loadings more efficiently than sinusoidal loading based on equivalent uniform stress concept.

  • PDF

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

에너지 개념에 기초한 액상화 평가방법에 관한 연구 (Evaluation of Liquefiable Soils by Energy Concept)

  • 김수일;유정선;박근보;박성용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.590-599
    • /
    • 2006
  • In this study, Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal loading, increasing wedge loading, and real earthquake loading were investigated focusing on the dissipated energy. From the results of cyclic triaxial test, liquefaction resistance strength was calculated by the concept of energy according to the type of input loading. Liquefaction resistance strength was expressed in accumulated dissipated energy calculated from stress-strain curve(hysteresis loop). The dissipated energy according to loading type was compared and the energy-based evaluation was proposed. The procedures are presented in terms of normalized energy demand(NED), normalized energy capacity(NEC), and factor of safely, where NED is the load imparted to the soil by the loading(both amplitude and duration), NEC is the demand required to induce liquefaction, and factor of safely is defined as the ratio of NEC and NED.

  • PDF

Study of using the loss rate of bolt pretension as a damage predictor for steel connections

  • Chui-Hsin Chen;Chi-Ming Lai;Ker-Chun Lin;Sheng-Jhih Jhuang;Heui-Yung Chang
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.81-90
    • /
    • 2023
  • The maximum drifts are important to the seismic evaluation of steel buildings and connections, but the information can hardly be obtained from the post-earthquake field investigation. This research studies the feasibility of using the loss rate of bolt pretension as an earthquake damage predictor. Full-scale tests were made on four steel connections using bolted-web-welded-flange details. One connection was unreinforced (UN), another was reinforced with double shear plates (DS), and the other two used reduced beam sections (RBS). The preinstalled strain gauges were used to control the pretensions and monitor the losses of the high-strength bolts. The results showed that the loss rate of bolt pretension was highly related to the damage of the connections. The pretensions lost up to 10% in all the connections at the yield drifts of 0.5% to 1%. After yielding of the connections, the pretensions lost significantly until fracture occurred. The UN and DS connections failed with a maximum drift of 4 %, and the two RBS connections showed better ductility and failed with a maximum drift of 6%. Under the far-field-type loading protocol, the loss rate grew to 60%. On the contrary, the rate for the specimen under near-fault-type loading protocol was about 40%. The loss rate of bolt pretension is therefore recommended to use as an earthquake damage predictor. Additionally, the 10% and 40% loss rates are recommended to predict the limit states of connection yielding and maximum strength, respectively, and to define the performance levels of serviceability and life-safety for the buildings.

재보수-보강된 철근콘크리트 보-기둥 접합부의 구조특성 (Structural Characteristics of Reinforced Concrete Beam-Column Joints Repaired and Restrengthening)

  • 조창호;김정섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.231-238
    • /
    • 2003
  • 지진에 의해 피해를 입은 철근콘크리트 건축물을 재사용이 가능하도록 보수-보강을 실시하여 구조적으로 안전성을 확보하게 되는데 이러한 보수-보강이 부적절하게 시공되었거나, 재지진을 받아 구조내력이 크게 감소된다면 다시 보수-보강을 할 수 밖에 없다. 본 연구에서는 지진 발생시 가장 우려되는 보-기둥 접합부를 실험 대상으로 선정하여, 시험체에 1차 동적하중과 2차 동적하중을 작용시킨 후 각각 보수-보강을 실시한 다음 구조특성 및 하중속도에 따른 보강성능을 검토하여 재보수-보강의 타당성을 규명하였다.

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.