• Title/Summary/Keyword: Earth unit

Search Result 450, Processing Time 0.033 seconds

Analysis of Contents of Reorganization of Textbooks by Pre-Service Teachers' on 'Comparison of Distances from Solar System to Planets' in First Semester of Elementary Science 5th Grade (초등과학 5학년 1학기 '태양에서 행성까지 거리 비교'에 대한 초등예비교사들의 교재 재구성 내용 분석)

  • Kim, Hae-Ran;Lee, Yong-Seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.3
    • /
    • pp.225-235
    • /
    • 2021
  • The purpose of this study is to obtain implications for the improvement direction of astronomical education methods and development of educational materials or software. In connection with the 5th grade 1st semester elementary science 'Solar System and Stars' unit, elementary pre-service teachers were given a reorganization task to compare the relative distances from the sun to the planets, and then this was analyzed. Pre-service teachers are 11 male and 19 female students in the second year of the music education department at the elementary school teacher training university in B city. The implications of the study results are as follows. First, the 'distance comparison activity using a roll of tissue paper' is suitable for simply comparing the distances from the sun to the planet, but it has limitations in allowing students to experience the vastness of the solar system or inducing student participation-centered classes. Second, it is necessary to develop software materials for elementary school students that can simultaneously reflect the size of the planet and the distance to the planet that can be applied indoors, and also experience the vastness of the solar system, as well as a wide learning space. Third, textbook materials for students have an important influence on the class design of pre-service teachers.

Exploring Teachers' Perceptions of Computational Thinking Embedded in Professional Development Program (컴퓨팅 사고를 반영한 교사연수 과정에서 나타난 교사의 인식 탐색)

  • Hwang, Gyu Jin;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.344-364
    • /
    • 2021
  • The study explored how two elementary school teachers perceived computational thinking, reflected them into curriculum revision, and taught them in the classroom during longitudinal professional developed program (PDP) for nine months. Computational thinking is a new direction in educational policy-making including science education; therefore we planned to investigate participating teachers' perception of computational thinking to provide their fundamental understandings. Nine meetings, lasting about two hours each, were held with the participating teachers and they developed 11 lesson plans for one unit each, as they formed new understandings about computational thinking. Data were collected through PDP program while two teachers started perceiving computational thinking, revising their curriculum, and implementing it into their class for nine months. The results were as follows; first, elementary school teachers' perception of computational thinking was that the definition of scientific literacy as the purpose of science education was extended, i.e., it refers to scientific literacy to prepare students to be creative problem solvers. Second, STEAM (science, technology, engineering, arts, and mathematics) lessons were divided into two stages; concept formation stage where scientific thinking is emphasized, and concept application, where computational thinking is emphasized. Thirdly, computational thinking is a cognitive thinking process, and ICT (informational and communications technology) is a functional tool. Fourth, computational thinking components appear repeatedly and may not be sequential. Finally, STEAM education can be improved by utilizing computational thinking. Based on this study, we imply that STEAM education can be activated by computational thinking when teachers are equipped with competencies of understanding and implementing computational thinking within the systematic PDPs, which is very essential for newly policies.

Major Factors Influencing Landslide Occurrence along a Forest Road Determined Using Structural Equation Model Analysis and Logistic Regression Analysis (구조방정식과 로지스틱 회귀분석을 이용한 임도비탈면 산사태의 주요 영향인자 선정)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.585-596
    • /
    • 2022
  • This study determined major factors influencing landslide occurrence along a forest road near Sangsan village, Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea. Within a 2 km radius of the study area, landslides occur intensively during periods of heavy rainfall (August 2020). This makes study of the area advantageous, as it allows examination of the influence of only geological and tomographic factors while excluding the effects of rainfall and vegetation. Data for 82 locations (37 experiencing landslides and 45 not) were obtained from geological surveys, laboratory tests, and geo-spatial analysis. After some data preprocessing (e.g., error filtering, minimum-maximum normalization, and multicollinearity), structural equation model (SEM) and logistic regression (LR) analyses were conducted. These showed the regolith thickness, porosity, and saturated unit weight to be the factors most influential of landslide risk in the study area. The sums of the influence magnitudes of these factors are 71% in SEM and 83% in LR.

Axial Behavior of Non-Displacement Tapered Piles in Sand (모래지반에서 비배토 테이퍼말뚝의 연직거동 특성)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.35-45
    • /
    • 2007
  • It is known that the response of piles is affected by the shape of pile as well as soil conditions. In order to investigate the characteristics of the axial responses and bearing capacities of non-displacement tapered and cylindrical piles in sands, 12 model pile load tests using a calibration chamber were conducted on model tapered and cylindrical piles, which were specially manufactured to measure the base and shaft load capacities independently. Results of the model tests showed that the shaft load of tapered piles continuously increased with pile settlement, whereas the shaft load of cylindrical piles reached ultimate values at a settlement equal to 4% of pile diameter. Therefore, taper piles have greater shaft loads than cylindrical one at the same settlement. It is also observed that the total load capacity of tapered piles is lower than cylindrical piles for dense sand but is greater than that of cylindrical piles for medium sand. The ultimate unit base resistance of tapered piles was greater than that of cylindrical piles for lateral earth pressure ratio greater than 0.4, and the shaft resistance was greater than that of cylindrical piles irrespective of lateral earth pressure ratio.

Physicochemical and Archaeometric Characteristics of Goryeo Period Potteries from the Sandongri in Seosan, Korea (서산 산동리 고려시대 도기의 물리화학적 및 고고과학적 특성)

  • Lee, Chan Hee;Jin, Hong Ju
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.123-139
    • /
    • 2016
  • The excavated potteries of Goryeo Period from the Sandongri archaeological site in Seosan were studied on physicochemical analyses. Surface color of the samples are mainly grayish blue, and showed the natural glaze by melting the body soils during the burning. Partly, swelling surface are observed bloated marks because of blow out gas by burning. The potteries are some possibility of making the similar source clay on the basis of magnetic susceptibilities (about $1{\times}10^{-3}SI\;unit$) and general occurrences. Values of specific gravity, apparent porosity and absorption ratio are divided two groups as highly different cases of bloating surface samples. The source clay of the potteries used mainly microcrystalline clay, the mineral compositions are quartz and some colored minerals. Based on the analysis, the burning temperature of the potteries are assumed that they were around $1,100^{\circ}C$ because detection of quartz and mullite within hard and compact matrices. As geochemical variations of the samples, evolution trends of rare earth, compatible and incompatible elements showed very similar patterns excepting the some major elements, that means the potteries are interpreted to making by elutriation processes using the same raw clays from very similar basement rocks of genetically.

A Study on the Corelation between the Variation of Land Cover and Groundwater Recharge Using the Analysis of Landsat-8 OLI Data (Landsat-8 위성을 통한 토지피복 변화와 지하수 함양량 상관성 고찰)

  • Park, Seunghyuk;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.347-378
    • /
    • 2020
  • Based on monthly average groundwater recharge over a nearly 10 year period, results of fully integrated hydrologic modeling of SWAT-MODFLOW, land cover, land use, soil type and hydrologic response unit (HRU) was used to assess the dominant influencing factors of groundwater recharge spatial patterns in Jangseong district. As dominant factors, land cover was FRSE (forest-evergreen) and soil type was Samgag. Landsat-8 OLI imaging spectrometer data were acquired in the period 2003 to 2004 and seasonal bare soil lines (BSL) were estimated through NIR-RED plot. Extent of slope of BSL was from 1.092 to 1.343 and the intercept was from -0.004 to -0.015. To know correlation between spatial groundwater recharge and soil-vegetation indices (PVI, NDVI, NDTI, NDRI), this study employed frequency and regression analysis. On May, RED band increased up 3 to 4 times compared to other seasons and only one turning point appeared as recharge-index with upward parabola bell shape as results of existing research. Considering precipitation, if the various studies for relationship between groundwater recharge and soil-vegetation index just like NDVI are performed, it is possible to estimate groundwater recharge through analyzing remote sensing data.

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

A Study on the Provenance of the Stones and the Surface Cracks in the Suljeongri East Three-story Stone Pagoda, Changnyeong, Korea (창녕 술정리 동삼층석탑 석재의 원산지 해석 및 표면균열에 관한 연구)

  • Kim, Jae-Hwan;Jwa, Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 2010
  • The Suljeongri east three-story stone pagoda in Changnyeong (National Treasure No. 34) has been damaged mainly by lots of cracks. The stones used for this pagoda are medium-granied equigranular pinkish biotite granite. Measured magnetic susceptibility values are of from 2 to 9 (${\times}10^{-3}$ SI unit). From the ${\gamma}$-ray spectrometer mesurement K, eU, and eTh contents of the stones are 3 to 7%, 8 to 19 ppm, and 11 to 35 ppm, respectively. Comparing the petrographical and chemical characteristics between the stones of the pagoda and the country rocks near Suljeongri, it is suggested that the most similar rock could be equigranular biotite granite in the western slope of the Mt. Hwawangsan. Vertical, horizontal and diagonal cracks are intensely developed at the lower part of the stone pagoda. Biotite granite has intrinsic microcracks defined as rift and grain rock cleavages. Both rock cleavages are assumed to have led to the crack growth and consequent mechanical damage of the pagoda. It seems that vertical cracks have been grown parallel to the principal compressional stress, and that horizontal cracks to the reacting tensional stress. Diagonal cracks seems likely to have been resulted from conjugate rift and grain rock cleavages.

Interpretation of Sedimentary Structure and Depositional Environment Based on a High-Resolution Seismic Profile across the Northeastern Boundary of the Pungam Basin (고해상도 탄성파자료를 이용한 풍암분지 북동부의 퇴적구조 및 퇴적환경 연구)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.91-99
    • /
    • 1999
  • A high-resolution seismic profile acquired across the northeastern boundary of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures across the basin boundary. We identified boundary faults and unconformity surfaces of the basin and divided sediment body into three seismic depositional units (Units I, II, and III from youngest to oldest). Inferred from fault geometry and type, northeastern part of the Pungam Basin has been formed by a strike-slip fault whereas the normal faults near the boundary were formed by transtensional movement along a fault zone. A 350-400 m thick sediment layer is overlying the Precambrian gneiss. Bedding planes of Unit III are dipping westward and are closely related to an anticline in the acoustic basement. Unit II is also tilted westward, suggesting that the eastern part of the fault zone was uplifted after deposition of lower part of the sedimentary body. Afterward, the uplifted sediment layers were eroded and transported to the western part of the basin. Chaotic reflection pattern of sedimentary Units II and III may suggest that strike-slip movement along the fault zone deformed basin-filled sediments.

  • PDF

COVID-19's Impact on the Space Industry and Countermeasures in Korea (코로나19가 한국 우주산업에 미친 영향과 대응방안)

  • Kim, Jong-Bum
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.195-201
    • /
    • 2020
  • COVID-19 is hitting the world. In order to bring about new ways of innovation in the space sector, we need to analyze changes in the space sector and design new challenge strategies. COVID-19 exposes inherent vulnerabilities in the space sector. In particular, COVID-19 is causing supply chain shocks in the space industry, resulting in delays in the supply of systems, subsystems and parts due to a complete or partial interruption of a manufacturing unit. As the overall impact of New Normal on the industry is overall, we continue to look at it in the space sector. COVID is causing supply chain shock in the space industry. It causes a delay in the supply of systems, subsystems and parts due to a complete or partial interruption of a manufacturing unit. In the supply of launch services, the launch schedule is being delayed, but the main launch is still taking place. Demand for major applications such as environmental monitoring is soaring in the earth observation utilization sector. Analyzing the impact on manufacturing, the vendor-based contraction is bringing delays in the supply of systems, subsystems and components, and launch service providers are trying to minimize delays in the launch schedule.