• Title/Summary/Keyword: Earth terminal

Search Result 49, Processing Time 0.026 seconds

Development of a Monitoring Method for Soil Erosion using an Ultrasonic Sensor (I) (초음파센서를 활용한 토양침식모니터링 방법 개발 (I))

  • Nam, Koung-Hoon;Lee, Jea-Hyoung;Lee, Hak-Yun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • Few studies have investigated soil management policy and soil erosion measurement, whereas the occurrence of climate change requires the establishment of robust soil management systems and appropriate control of soil erosion. In this study, we developed a smart sensor for real-time quantitative measurements of soil erosion at the watershed scale. The smart sensor consists of an ultrasonic sensor, a rainfall meter, a solar cell, an RTU (remote terminal unit),and a CDMA (code division multiple access) and it was programmed to take a measurement every 30 minutes. The depths measured by the smart sensor were compared with data from terrestrial LiDAR. Experimental results showed a strong correlation in the depth of soil erosion between LiDAR and the ultrasonic sensor for the period from 22 August to 11 October 2013. Furthermore, the correlation coefficient between soil erosion depth (mm) and soil erosion volume (m3) was 0.9063 in the lower region of the watershed and is 0.9868 in the upper region. The proposed ultrasonic sensor technique can provide high-quality data for soil conservation and management systems in the future.

Self-interference Cancellation for Shared Band Satellite Transmission (동일 주파수 위성 전송을 위한 자기 간섭 제거 방식)

  • Ryu, Joon-Gyu;Jeon, Hanik;Oh, Deock-Gil;Yu, Heejung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2015
  • In this paper, a shared band transmission, in which downlink signals from satellite to both earth station and user terminal are transmitted in the same frequency band, is considered. For proper operation of such shared band transmission, self-interference caused by the transmitted signal from its own transmitter should be cancelled and the desired signal from the other transmitter should be obtained. The self-interference is sent by its own transmitter and it can be easily regenerated with the estimated round-trip delay. In addition to this delay, non-linearity effects caused by power amplifiers at the earth station and satellite should be exploited. The proposed interference canceller divided into two parts: one is subtraction of the transmitted signal with delay and non-linearity effects, and the other is adoptive filter to suppressed the residual interference. Through computer simulations, the effectiveness of the proposed system is verified.

Low Thrust, Fuel Optimal Earth Escape Trajectories Design (저추력기를 이용한 연료 최적의 지구탈출 궤적 설계 연구)

  • Lee, Dong-Hun;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.647-654
    • /
    • 2007
  • A Discrete continuation Method/homotopy approaches are studied for energy/fuel optimal low thrust Earth escape trajectory by solving a two point boundary value problem(TPBVP). Recently, maneuvers using low thrust propulsion system have been identified as emerging technologies. The low thruster is considered as the main actuator for orbit maneuvers. The cost function consists of a energy/fuel consumption function, and constraints are position and velocity vectors at the terminal escape point. Solving the minimum energy/fuel problem directly is not an easy task, so we adopt the homotopy analysis. Using a solution of the minimum energy, which is solved by discrete continuation method, we obtain the solution of the minimum fuel problem.

Scenarios of HAPS Operation for frequency sharing between HAPS and Satellite (HAPS와 위성간 주파수 공유를 위한 HAPS 운용 시나리오)

  • Ku, Bon-Jun;Ahn, Do-Seob;Kim, Nam
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.20-27
    • /
    • 2009
  • In this paper, HAPS operation scenario is proposed to minimize the interference from HAPS user terminal(HUT) to geostationary earth orbit(GEO) satellite receiver. The conventional scenario has been assumed for fully operated situation of HUT. However, all the HUTs could not be fully operated in a real system operation. Therefore, in order to reduce the interference to other systems, multibeam operation scenarios such as time division and adaptive time division methods are proposed and the interference effect of HUT to satellite receiver is evaluated according to various operation rate of HUT.

  • PDF

STATISTICAL SURVEY FOR THE PHYSICAL CHARACTERISTIC OF NEAR CONTACT BINARY(NCBs) (근접촉쌍성(NCBs)의 물리적 특성에 대한 통계적 분석)

  • Oh, Kyu-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.233-242
    • /
    • 2005
  • The absolute dimensions and orbital elements of 66 near contact binaries, collected from literatures, have been analyzed to investigate the physical characteristics of the near contact binaries as well as co-relations among physical parameters. The relationship between the mass ratio and luminosity ratio of the near contact binary systems have been obtained as a $L_2/L_1{\approx}(M_2/M_1)^{1.45}$, which is similar to that of the early type contact binary system. The physical parameters of the new contact binaries show that the difference in mass, radius, luminosity and temperature between the primary and the secondary components for the F type NCBs are smaller than those for the A type NCBs. In H-R diagram, the components of the A types are located closer to the terminal age main sequence than those of the F types.

Luminosities and Rates of Mass Loss of Some Galactic Wolf-Rayet Stars (은하 볼프-레이에 별의 광도와 질량손실률)

  • Woo, Jong-Ok
    • Publications of The Korean Astronomical Society
    • /
    • v.4 no.1
    • /
    • pp.16-30
    • /
    • 1989
  • We present recent data of absolute measurements of flux emmitted in the visible continua of some galactic Wolf-Rayet stars, carried out by means of a two-channel scanner built up cooperatively by the Observatoire de Lyon and the Laboratoire d'Astronomie Spatiale. Our measurements lead to the determination of stellar angular diameters which enable us to compute log $L_*/L_{\odot}$ and to locate the WR stars in the HR diagram: The WR stars are cooler than the zero age main sequence (ZAMS) and the WN7, WN8 types appear more luminous than other subclasses. The stellar wind terminal velocities, $V_{\infty}$, deduced from the empirical relation of the effective temperatures by Underhil1(1983) and $V_{\infty}$ adopted from the work of Willis(1982) show about 2,000km/s. We derived the rate of mass loss for the program stars from the formula, $\dot{M}={\varepsilon}(T_{eff})\;L/V_{\infty}{\cdot}c$ by using the obtained effective temperatures, luminosities and $V_{\infty}$ in this work. Their values range from $\dot{M}=1.4{\times}10^{-5}$ to $\dot{M}=5.8{\times}10^{-5}\;\dot{M}_{\odot}/yr$.

  • PDF

Evaluation of the Protection Performance of TT and TN Systems for Low-Voltage Consumers Against Lightning Surges (저압수용가에 공급하는 TT, TN계통의 뇌서지에 대한 보호성능의 평가)

  • Lee, Kyu-Sun;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Most of domestic low-voltage consumers are supplied from the TN-C system of KEPCO, but their load installations have established according to the national statutory standard for electrical installations based on the TT system. In this work, to propose the proper system earthing arrangements of ensuring the protection of information-technology equipment against lightning surges, the protection performance of TT and TN systems against lightning surges was investigated. As a result, when lightning surge was injected to the neutral line of distribution system, the potential difference between the equipment earth terminal and neutral point of low-voltage mains in a TT system was significantly raised. The TT system is not advised due to the risk of damage to the sensitive computer equipment. Main equipotential bonding is an important requirement for protection of low-voltage installations against lightning surges. The TN system provides the best means to reduce the incoming lightning surges through the neutral line of low-voltage service systems. In addition, It is highly recommended to install the additional earthing at the service position of low-voltage consumers.

STATION-KEEPING MANEUVERS FOR A GEOSTATIONARY SATELLITE USING LINEAR QUADRATIC REGULATOR (선형제차조절법을 이용한 정지궤도 위성의 위치보존 궤도조정)

  • 이선익;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.142-149
    • /
    • 1997
  • This paper applied one of the well-known optimal control theory, namely, linear quadratic regulator(LQR), to the station-keeping maneuvers(SKM) for a geostationary satellite. The boundary conditions to transfer the system with a good accuracy at a terminal time were based upon the predicted orbital data which are created due to the Earth's non-uniform mass distribution's effect during 14 days and due to luni-solar effect during 28 days. Through the linearization of the nonlinear system equation with respect to reference orbit and the numerical integration of Riccati equation, the optimal trajectories and the corresponding control law have been obtained by using LQR. From the comparison of ${\Delta}V$ obtained by LQR with the ${\Delta}V$ obtained anatically by geometric method, Station Keeping Maneuvers(SKM) via LQR may provide comparable results to a real system. Furthermore it will demonstrate the possibility in fuel optimization and life extension of geostationary satellite.

  • PDF

A Study on the Measurement of Electric Resistance of Footwear (신발의 전기저항 측정에 관한 연구)

  • Choi, Sang-Won;Lee, Seokwon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

A Consideration on the Causes of 22.9kV Cable Terminal Burning Accident (22.9kV 케이블 단말 부위 소손 사고의 원인에 관한 고찰)

  • Shim, Hun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • The main cause of cable accidents is the accelerated deterioration of the cable itself or internal and external electrical, mechanical, chemical, thermal, moisture intrusion, etc., which reduces insulation performance and causes insulation breakdown, leading to cable accidents. Insulation deterioration can occur even when there is no change in the appearance of the cable, so there is a difficulty in preventing cable accidents due to insulation deterioration. Since cable accidents can occur in areas with poor insulation due to the effects of overvoltage and overcurrent, it is necessary to comprehensively analyze transformers and circuit breakers, and ground faults caused by phase-to-phase imbalance. Ground fault accidents due to insulation breakdown of cables can occur due to defects in the cable itself and poor cable construction, as well as operational influences, arcs during operation of electrical equipment (switchers, circuit breakers, etc.). analysis is needed. This study intends to examine the causes of cable accidents through analysis of cable accidents that occurred in a manufacturing factory.