• Title/Summary/Keyword: Earth pressures

Search Result 217, Processing Time 0.021 seconds

Effect of Bedding Conditions on Earth Pressure Distribution of Embedded Pipes (EPS베딩재가 지중매설관의 토압에 미치는 영향)

  • Yoo, Nam-Jae;Lee, Hee-Kwang;Park, Byung-Soo;Jeong, Gil-Soo;Sim, Do-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.121-130
    • /
    • 2007
  • In this paper, large scale experimental model tests were performed to investigate the distribution of earth pressure acting on embedded rigid pipes having different bedding conditions. For these tests, very light weighted EPS blocks were installed at top and bottom of the rigid pipe and Jumunjin Standard Sand was used as a ground material. As results of model tests, for the case of no bedding on the pipe, the measured pressure at the bottom of the pipe was $4.96_{tf/m^2}$ whereas they were in the range of $1.87{\sim}4.96_{tf/m^2}$ in the case of EPS beddings being installed at the top and the bottom of the pipe. Therefore, for the case of EPS bedding being installed, the ratio of reduced pressures acting on the pipe, compared with the case of no EPS beddings, were in the rage of 16~62%. As a result of parametric test with changing the locations of EPS bedding, the trend of reducing the stress acting on the pipe was in the order of bottom bedding, top bedding, and top and bottom bedding. Effect of bedding positions on the reduced magnitude of acting pressure on the pipe was more significant in the case of top bedding than in the case of the bottom bedding.

Hydrothermal Au-Ag Mineralization of the Oknam Mine in the Northern Sobaegsan Massif (북부 소백산 육괴 지역에 부존하는 옥남 광산의 열수 금-은 광화작용)

  • Yun, Seong-Taek;Chi, Se-Jung;So, Chil-Sup;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.389-398
    • /
    • 1998
  • The Au-Ag deposit of the Oknam mine occurs as gold-silver-bearing rhodochrosite veins in biotite schist and phyllite of the Precambriam Yulri Group. Five stages of ore deposition are recognized, each showing a definite mineral assemblage. General mineral parageneses in veins (stage III) associated with gold and silver vary inwardly from the vein margin: arsenopyrite + pyrite $\Rightarrow$ sphalerite+chalcopyrite+galena+gold $\Rightarrow$ ga1ena+Ag-bearing minerals. Fluid inclusion data indicate that temperature and salinity of ore fluids overally decreased with time: $345^{\circ}{\sim}240^{\circ}C$ and 3.4~7.8 wt. % NaCl equiv during stage I (quartz vein mineralization), $313^{\circ}{\sim}207^{\circ}C$ and 2.3~8.7 wt.% NaCl equiv during manganese-bearing carbonate stages (II and III), and $328^{\circ}{\sim}213^{\circ}C$ and 3.6-5.4 wt.% NaCl equiv during stage IV (quartz vein mineralization). The ore fluids probably evolved through repeated pulses of boiling and later mixing with cooler and more dilute meteoric waters. Fluid inclusion data and geologic arguments indicate that pressures during the mineralization were in the range of 90 to 340 bars. Gold occurs as silver-rich electrums (21 to 29 atom. % Au) and was deposited at temperatures between $300^{\circ}$ and $240^{\circ}C$. Thermochemical calculations suggest that gold was deposited as a combined result of increase in pH and decreases in temperature, $fs_2$ and $fo_2$.

  • PDF

The Consolidation Characteristics of Soft Clay by Stepped Vacuum Pressure in Individual Vacuum Method (개별진공압밀공법이 적용된 점성토의 단계진공압에 따른 압밀특성)

  • Han, Sang-Jae;Kim, Jong-Seok;Kim, Byung-Il;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.41-52
    • /
    • 2012
  • Suction drain method can directly apply vacuum pressure to the soft ground through vertical drains so it can make hardening zones around them. These hardening zones make steeply lower the discharge efficiency of the pore water with decreasing permeability. This paper considered a stepped vacuum pressure to minimize a hardening zone which is one of the important parameters that can decrease discharge efficiency. A series of laboratory tests were conducted in order to examine the effect of the hardening zones and to evaluate their effects to the ground improvements with varying durations which applied stepped vacuum pressures(-20kPa, -40kPa, -60kPa and -80kPa) with Busan marine clay. According to strength(CPT), water content test and theoretical investigation indicate a size of the hardening zone within 7cm and the decreasing ratio of permeability about 2.0~4.0. Also, the total settlements are larger for the stepped vacuum pressure than the instant vacuum loading. The application time with vacuum pressure is determined considering the geotechnical properties of the interested clays. Results of numerical analysis show that consolidation behavior is appropriate to measurement for considering hardening zones.

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

Characterization on the Relationships among Rainfall Intensity, Slope Angle and Pore Water Pressure by a Flume Test : in Case of Gneissic Weathered Soil (산사태 모형실험을 통한 강우강도 및 사면경사 변화와 간극수압과의 관계 연구 : 편마암 풍화토를 대상으로)

  • Chae, Byung-Gon;Lee, Seong-Ho;Song, Young-Suk;Cho, Yong-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.57-64
    • /
    • 2007
  • This study was conducted to characterize on the relationships among rainfall intensity, slope angle and pore water pressure in the gneissic weathered soil by landslide laboratory flume tests. Under the several test conditions dependent on rainfall intensity and slope angle, the authors measured pore water pressure, failure and displacement of slope on a regular time interval. According to the test results, the increasing times of pore water pressures have direct proportional trends to the rainfall intensity. The pore water pressure was increased earlier at the head part of slope than the toe part. Compared with the test results of Chae et al(2006), the results of this study explain that the seepage velocity in the gneissic weathered soil is slower than that in the standard sands. It results in faster and ear-lier increase of pore water pressure at the head part of slope due to slow flow of water in the gneissic weathered soil. In case of the relationship between slope angle and pore water pressure, gentle slope angle has faster increase of pore water pressure than steeper slope angle. It is also thought to be due to slow seepage velocity and flow velocity in the gneissic weathered soil.

Development of simulation equipment system on EPB shield TBM hood operation (토압식 쉴드TBM의 후드부 시뮬레이션 장비 시스템 개발에 대한 연구)

  • Kim, Sang-Hwan;Oh, Tae-Sang;Park, Soo-Hwan;Lee, Choong-Yeoul;Park, Jong-Kwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This paper presents the development of simulation system on EPB shield TBM Hood operation. In recent, EPB shield TBM is widely used in the tunnel construction. Since the hood system of the EPB shield TBM is most important to excavate the tunnel, it is necessary to perform the simulation of hood system to investigate the design and operation parameters prior to tunnel construction. In order to carry out this study, the scaled simulation system was designed and developed. The model tests were performed to verify the developed system. During the simulation, the earth pressures developed in the chamber during tunnelling were measured to evaluate the operation technique. The test results obtained by the developed simulation system show clearly the similar behaviour of TBM hood compared with the field data. It was also found that the ground loss during tunnelling is dependent on the change of earth pressure in chamber. Therefore, the simulation system developed in this study will be very useful to evaluate the operation technique of the TBM hood prior to tunnel construction. In addition, this system will be applied in a various condition of ground to get the operating information.

Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes (상업용 정밀여과/한외여과막의 특성 분석 및 해수 여과 성능 평가)

  • Choi, Changkyoo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.542-547
    • /
    • 2017
  • This paper was to analyze the membrane characterization of hydrophilicity, surface morphology and membrane chemical anlysis of three commercial microfiltration/ultrafiltration membranes, and evaluate the filtration performance of a seawater to assess the availability for pretreatment of desalination process. From the results of contact angle, Mem-3, fabricated with polyacrylonitrile, was highly hydrophilic. It find out that Mem-3 has more anti-biofouling property. In Field emission scanning electron microscope (FESEM), Mem-1 (polyethylene) and Mem-2 (Polyvinylidenefluoride) showed the sponge-like shape and Mem-3 showed finger-like shape. Membrane chemical analysis by energy dispersive spectrometer (EDS) presented that Mem-2 was mostly fluoride and Mem-3 had s high ratio of N (32.47%) due to the nitrile group. The permeation flowrate per time on suction pressures using deionized water (D.I. water) tends that permeation rate of Mem-3 more increased when the pressure was increased compared to other membranes. From the results of turbidity and total suspended solids (TSS) removal, turbidity of permeate was 0.191 NTU to 0.406 NTU and TSS was 2.2 mg/L to 3.0 mg/L in all membranes, indicating that it was not suitable for the pretreatment of seawater desalination by short-term experiments.

Evaluation of the Installation Mechanism of the Micropile with the Base Expansion Structure Using a Centrifuge Model Test (원심모형실험을 활용한 선단확장형 마이크로파일의 설치 메커니즘 평가)

  • Kim, Jae-Hyun;Kim, Seok-Jung;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.37-49
    • /
    • 2021
  • Micropiles are widely used in construction field to enhance bearing capacity and reduce settlement of existing foundation. It has various benefits such as low construction expense, simple installation process, and small construction equipment. Recently, new microple equipped with the base expansion structure at the end has been developed to improve the foundation bearing capacity. The improvement of load capacity can be conceptually achieved by expanding the base expansion structure when a load is applied to the micropile. However, the expansion mechanism of the base expansion structure and the improvement of load capacity of the micropile were not yet experimentally validated. Therefore, in this study, a series of centrifuge model tests was performed to evaluate the effect of the base expansion structure on the improvement of load capacity. Two types of soil, sand and weathered rock, were prepared and the loading tests were performed using the real micropile with the base expansion structure. During the tests, the earth pressures surrounding the base expansion structure were monitored. As a result, when a load of 30 kN was applied to the micropile, the increase in the ratio of the horizontal to vertical pressure increment (∆σh/∆σ𝜈) ranged from 0.4 to 0.58 in sand and ∆σh/∆σ𝜈 = 0.19 in weathered rock, respectively. Therefore, it can be concluded that the increase in the horizontal earth pressure adjacent to the base expansion structure will improve the bearing capacity of the micropile.

Modelling of Permeability Reduction of Soil Filters due to Clogging (흙 필터재의 폐색으로 인한 투수성 저하 모델 개발)

  • ;;Reddi, Lakshmi.N
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.271-278
    • /
    • 1999
  • Soil filters are commonly used to protect the soil structures from eroding and piping. When filters are clogged by fine particles which are progressively accumulated, these may lead to buildup of excessive pore pressures also leading to instability in subsurface infrastructure. A filter in the backfill of a retaining wall, a filter adjacent to the lining of a tunnel, or a filter in the bottom of an earth dam can be clogged by transported fine particles. This causes reduction in the permeability, which in turn may lead to intolerable decreases in their drainage capacity. In this thesis, the extent of this reduction is addressed using results from both experimental and theoretical investigations. In the experimental phase, the permeability reduction of a filter is monitored when an influent of constant concentration flows into the filter (uncoupled test), and when the water flow through the soil-filter system to simulate an in-situ condition (coupled test), respectively. The results of coupled and uncoupled test are compared with among others. In the theoretical phase of the investigation, a representative elemental volume of the soil filter was modeled as an ensemble of capillary tubes and the permeability reduction due to physical clogging was simulated using basic principles of flow in cylindrical tubes. In general, it was found that the permeability was reduced by at least one order of magnitude, and that the results from the uncoupled test and theoretical investigations were in good agreement. It is observed that the amount of deposited particles of the coupled test matches fairly well with that of the uncoupled test, which indicates that the prediction of permeability reduction is possible by preforming the uncoupled test instead of the coupled test, and/or by utilizing the theoretical model.

  • PDF

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.