• Title/Summary/Keyword: Earth parameter

Search Result 316, Processing Time 0.022 seconds

Time-lapse Inversion of 3D Resistivity Monitoring Data (3차원 전기비저항 모니터링 자료의 시간경과 역산)

  • Kim, Yeon-Jung;Cho, In-Ky;Yong, Hwan-Ho;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • We developed a time-lapse inversion using new cross-model constraints based on change ratio and resolution of model parameters. The cross-model constraint based on change ratio imposes the same penalty on the model parameters with equal change ratio. This constraint can emphasize the model parameters with significant change regardless of their increase or decrease. The resolution cross-model constraint imposes a small penalty on the model parameters with poor resolution, but a large penalty on the model parameters with good resolution. Thus, the model parameter with poor resolution can be effectively identified in the inversion result if they are significantly changed with time. Through the numerical tests for 3D resistivity monitoring data sets, the performance of these two cross-model constraints was confirmed. Finally, for the safety estimation of a sea dyke, we applied the developed time-lapse inversion to the 3D resistivity monitoring data that were acquired at a sea dike located in western coastal area of Korea. The result of time-lapse inversion suggested that there were no significant changes at the sea dike during the monitoring period.

An Interpretive Analysis of Magnetotelluric Response for a Three-dimensional Body Using FDM (FDM을 이용한 MT 탐사의 3차원 모형 반응 연구)

  • Han Nuree;Lee Seong Kon;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.136-147
    • /
    • 2004
  • In this study, the characteristics of magnetotelluric (MT) responses due to a three-dimensional (3-D) body are analyzed with 3-D numerical modeling. The first model for the analysis consists of a single isolated conductive body embedded in a resistive homogeneous half-space. The second model has an additional conductive overburden while the other conditions remain the same as the first one. The analysis of apparent resistivities shows well that the 3-D effects are dominant over some frequency range for the first model. Two mechanisms, current channeling and induction, for secondary electric fields due to the conductive body are analyzed at various frequencies: at high frequencies induction is more dominant than channeling, while at low frequencies channeling is more dominant than induction. Tippers have a strong relation to the position of anomalous body and the real and imaginary parts of induction vector also indicate the position of anomalous body. off-line conductive anomaly sometimes causes severe problem in 2-D interpretation. In such case, induction vector analysis can give information on the existence and location of the anomalous body. Each parameter of the second model shows similar responses as those of the first model. The only difference is that the magnitude of all parameters is decreased and that the domain showing the 3-D effects becomes narrower. As shown in this study, the analysis of 3-D effects provides a useful and effective means to understand the 3-D subsurface structure and to interpret MT survey data.

Resolution and Image processing Methods of Tomogram and There impact of Computational Velocity Estimation (토모그램의 해상도와 영상처리 기법이 속도예측에 미치는 영향)

  • Lee, Min-Hui;Song, Da-Hee;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.147-154
    • /
    • 2009
  • Physical properties of rocks, such as velocity, are strongly dependant on detailed pore structures, and recently, pore micro-structures by X-ray tomography techniques have been used to simulate and understand the physical properties. However, the smoothing effect during the tomographic reconstruction procedure often causes an artifact - overestimating the contact areas between grains. The pore nodes near a grain contact are affected by neighboring grain nodes, and are classified into grain nodes. By this artifact, the pore structure has higher contact areas between grains and thus higher velocity estimation than the true one. To reduce this artifact, we tried two image processing techniques - sharpening filter and neural network classification. Both methods gave noticeable improvement on contact areas between grains visually; however, the estimated velocities showed only incremental improvement. We then tried to change the resolutions of tomogram and quantify its impact on velocity estimation. The estimated velocity from the tomogram with higher spatial resolution was improved significantly, and with around 2 micron spatial resolution, the calculated velocity was very close to the lab measurement. In conclusion, the resolution of pore micro-structure is the most important parameter for accurate estimation of velocity using pore-scale simulation techniques. Also the estimation can be incrementally improved if combined with image processing techniques during the pore-grain classification.

  • PDF

An efficient 2.5D inversion of loop-loop electromagnetic data (루프-루프 전자탐사자료의 효과적인 2.5차원 역산)

  • Song, Yoon-Ho;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2008
  • We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF

A Molecular Dynamics Simulation Study of Hydroxyls in Dioctahedral Phyllosilicates (분자동역학 시뮬레이션을 이용한 이팔면체 점토광물 수산기 연구)

  • Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.209-220
    • /
    • 2016
  • Clay minerals are a major player to determine geochemical cycles of trace metals and carbon in the critical zone which covers the atmosphere down to groundwater aquifers. Molecular dynamics (MD) simulations can examine the Earth materials at an atomic level and, therefore, provide detailed fundamental-level insights related to physicochemical properties of clay minerals. In the current study, we have applied classical MD simulations with clayFF force field to dioctahedral clay minerals (i.e., gibbsite, kaolinite, and pyrophyllite) to analyze and compare structural parameters (lattice parameter, atomic pair distance) with experiments. We further calculated vibrational power spectra for the hydroxyls of the minerals by using the MD simulations results. The MD simulations predicted lattice parameters and interatomic distances respectively deviated less than 0.1~3.7% and 5% from the experimental results. The stretching vibrational wavenumber of the hydroxyl groups were calculated $200-300cm^{-1}$ higher than experiment. However, the trends in the frequencies among different surface hydroxyl groups of each mineral was consistent with experimental results. The angle formed by the surface hydroxyl group with the (001) plane and hydrogen bond distances of the surface hydroxyls were consistent with experimental result trends. The inner hydroxyls, however, showed results somewhat deviated from reported data in the literature. These results indicate that molecular dynamics simulations with clayFF can be a useful method in elucidating the roles of surface hydroxyl groups in the adsorption of metal ions to clay minerals.

Failure Function of Transversely Isotropic Rock Based on Cassini Oval (Cassini 난형곡선을 활용한 횡등방성 암석 파괴함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.243-252
    • /
    • 2017
  • Since the failure behavior of transversely isotropic rocks is significantly different from that of isotropic rocks, it is necessary to develop a transversely isotropic rock failure function in order to evaluate the stability of rock structures constructed in transversely isotropic rock masses. In this study, a spatial distribution function for strength parameters of transversely isotropic rocks is proposed, which is based on the Cassini oval curve proposed by 17th century astronomer Giovanni Domenico Cassini to model the orbit of the Sun around the Earth. The proposed distribution function consists of two model parameters which could be identified through triaxial compression tests on transversely isotropic rock samples. The original Mohr-Coulomb (M-C) failure function is extended to a three-dimensional transversely isotropic M-C failure function by employing the proposed strength parameter distribution function for the spatial distributions of the friction angle and cohesion. In order to verify the suitability of the transversely isotropic M-C failure function, both the conventional triaxial compression and true triaxial compression tests of transversely isotropic rock samples are simulated. The predicted results from the numerical experiments are consistent with the failure behavior of transversely isotropic rocks observed in the actual laboratory tests. In addition, the simulated result of true triaxial compression tests hints that the dependence of rock strength on intermediate principal stress may be closely related to the distribution of the microstructures included in the rock samples.

Assessment of River Water Quality Contaminated by Abandoned Mine and Hot-Spring using Principal Component Analysis (주성분분석기법을 적용한 온천 및 폐광산 오염원에 대한 하천수질평가)

  • Lee Jae-Young;Sato Yuko;Kang Meea;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.381-390
    • /
    • 2005
  • S City depends on the T River as source water for water supply. Arsenic and boron from the hot-spring waste-water discharged from the hot-spring spa resort and emerging from the fractures of bedrock of the river have been prevalent contaminant of the T River water. This research was conducted to propose the simple and quick surrogate parameter for water quality management easily. And through making hexa-diagram of principal ions in the water samples, existing state of the water and influence of the human activity or geological origin can be figured out. As a results of characteristics of the T River water quality using principal component analysis, the contributory percentages of the 1st, 2nd and 3rd principal components were $40.80\%,\;21.40\%\;and\;11.31\%$, respectively. Therefore it was clarified that the quality of the T River water could be explained by these three principal components. Concentration of the chloride ion, which is one of the characteristics of the hot-spring water, was well correlated to both arsenic and boron concentrations. Hence concentrations of the arsenic and boron in the raw water of the water reatment plant can be predicted by the measurement of concentration of the chloride ion.

Optimal Rejection of Sea Bottom, Peg-leg and Free-surface Multiples for Multichannel Seismic Data on South-eastern Sea, Korea (동해 남동해역 다중채널 해양탄성파 탐사자료의 해저면, 페그-레그 및 자유해수면 다중반사파 제거 최적화 전산처리)

  • Cheong, Snons;Koo, Nam-Hyung;Kim, Won-Sik;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil;Kim, Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.289-298
    • /
    • 2009
  • Optimal data processing parameters were designed to attenuate multiples in seismic data acquired in the south-eastern area of the East Sea, in 2008. Bunch of multiples caused by shallow sea water depth were perceived periodically up to two way travel time of 1,750 ms at every 250 ms over seismic traces. We abbreviated sea bottom multiple as SBM, Peg-leg multiple as PLM, and free-surface multiple as FSM. To attenuate these multiples, seismic data processing flow was constructed including NMO, stack, minimum phase predictive deconvolution filter and wave equation multiple rejections (WEMR). Prevalent multiples were suppressed by predictive deconvolution and remaining multiples were attenuated by WEMR. We concluded that combining deconvolution with WEMR was effective to a seismic data of study area. Derived parameter can be applied to the seismic data processing on adjacent survey area.

Study on Electrical Resistivity Pattern of Soil Moisture Content with Model Experiments (토양의 함수율에 따른 전기비저항 반응 모형 실험 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Lee, Heui Soon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2013
  • Geophysical investigation in non-destructive testing is economically less expensive than boring testing and providing geotechnical information over wide-area. But, it provides only limited geotechnical information, which is hardly used to the design. Accordingly, we performed electrical resistivity experiments on large scale of soil model to analyze the correlation between electrical resistivity response and soil water contents. The soils used in the experiments were the Jumunjin standard sand and weathered granite soil. Each soil particle size distribution and coefficient of uniformity of experimental material obtained in the experiments were maintained in a state of the homogeneous. The specifications of the model used in this study is $160{\times}100{\times}50$(cm) of acrylic, and each soil was maintained at the height 30 cm. The water content were measured using the 5TE sensors (water contents sensors) which is installed 7 ~ 8 cm apart vertically by plugging to floor. The results of the resistivity behavior pattern for Jumunjin standard sand was found to be sensitive to the water content, while the weathered granite soil was showing lower resistivity over the time, and there was no significant change in behavior pattern observed. So, it results that the Jumunjin standard sand's particle current conduction was better than the weathered granite soil's particle through contact with the distilled water. This lab test was also compared with the result of a test bed site composed of similar weathered soil. It was confirmed that these experiments were underlying research of non-destructive investigation techniques to improve the accuracy to estimate the geotechnical parameter.